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Motivation

(a) Identity a (b) Morphed image (c) Identity b

Figure 1. Example of the proposed Diffusion-based morphing attack. Samples are from FRLL dataset.

Face Recognition (FR) systems are vulnerable to face morphing attacks [1].

Two classes of morphing attacks: landmark-based attacks and deep learning-based

attacks.

Nearly all state-of-the-art deep learning-based attacks are based on the GAN

framework.

Diffusion-based methods have been shown to outperform GANs [2].

Methodology

Figure 2. The forward and reverse Diffusion processes.

Diffusion method gradually destroys an image by adding noise, q(xt | xt−1).
Learn reverse trajectory pθ(x0:T ) by optimizing the evidence lower bound (ELBO).

Using the Denoising Diffusion Implicit Model (DDIM) scheduler allows for deterministic

generation
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Diffusion autoencoders embed both stochastic and semantic details in twin latent

spaces [3].

Condition forward and reverse trajectories on latent embedding z = E(x0).
Training loss is done via a simplified loss function.
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Morph both stochastic `X (x(a)
T , x(b)

T ; 0.5) and semantic `Z(za, zb; 0.5) latent codes.
Stochastic interpolation is spherical, semantic is linear.

Preform rudimentary “pre-morph” in image space ξ(x(a)
0 , x(b)

0 ) before diffusing.
Morphed semantic latent guides generative process.

Figure 3. Proposed architecture for Diffusion-based morphs, where the green traces indicate variables

associated with identity a, likewise red traces denote identity b, and blue traces for the morphed identity ab.

Experimental Setup

FERET [4], FRLL [5], and FRGC v2.0 [6] datasets were used to evaluate the proposed

attack.

Evaluated performance against two publicly available state-of-the-art face recognition

systems: FaceNet and VGGFace2.

Compared against four other morphing attacks: OpenCV, FaceMorpher, StyleGAN2,

and MIPGAN-II.

OpenCV and FaceMorpher are landmark-based attacks.

StyleGAN2 and MIPGAN-II are based on the StyleGAN2 architecture.

The OpenCV, FaceMorpher, and StyleGAN2 morphed images were generated by [7].

The MIPGAN-II morphs were created by [8].

Evaluation of Visual Fidelity

(a) Identity a (b) OpenCV (c) StyleGAN2 (d) Diffusion (e) MIPGAN-II (f) FaceMorph (g) Identity b

Figure 4. Different generated morphs from two identities from the FRLL dataset.

The visual fidelity is measured using the Fréchet Inception Distance (FID).

The FID is defined as the Fréchet (2-Wasserstein) distance between the activations of

the deepest layer of the Inception v3 network.

The 2-Wasserstein metric between two probability measures µ, ν with finite moments

on Rn is defined as
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where Π(µ, ν) is the set of all distributions with marginals µ and ν.

The FID is measured between the morphed images and genuine images for each

dataset.

Table 1. FID across different morphing attacks. Lower is better.

Morphing Attack FRLL FRGC FERET

StyleGAN2 45.19 86.41 41.91

FaceMorpher 91.97 88.14 79.58

OpenCV 85.71 100.02 91.94

MIPGAN-II 66.41 115.96 70.88

Diffusion 42.63 64.16 50.45

Vulnerability of FR Systems

The Mated Matched Presentation Match Rate (MMPMR), specifically the

ProdAvg-MMPMR variant, is used to evaluate the vulnerability of an FR system to a

morphing attack.

Table 2. MMPMR at FMR = 0.1% across different morphing attacks. Higher is better.

FRLL FRGC FERET

Morphing Attack FaceNet VGGFace2 FaceNet VGGFace2 FaceNet VGGFace2 Geometric Mean

StyleGAN2 4.69 6.05 0.18 0.85 0.54 0.76 1.10

FaceMorpher 11.26 36.4 0.51 9.15 2.3 10.78 6.02

OpenCV 17.34 40.93 0.14 12.16 1.69 11.12 5.32

MIPGAN-II 30.96 26.74 3.12 7.94 6 5.39 9.34

Diffusion 28.14 35.37 2.68 8.47 6.47 13.03 11.13

Detectability of Morphing Attacks

Table 3. Ablation study on the impact morphing attack on validation accuracy.

Training Attack Validation Attack

Dataset Diffusion FaceMorpher MIPGAN-II OpenCV StyleGAN2 Diffusion FaceMorpher MIPGAN-II OpenCV StyleGAN2

FERET 7 3 3 3 3 72.73 99.23 100 99.95 99.33

FERET 3 7 3 3 3 99.9 76.39 100 99.85 99.64

FERET 3 3 7 3 3 99.69 99.38 100 99.95 99.54

FERET 3 3 3 7 3 99.74 99.48 100 99.74 99.43

FERET 3 3 3 3 7 99.74 98.56 99.9 99.74 87.89

FRGC 7 3 3 3 3 75.89 99.98 99.97 99.9 99.93

FRGC 3 7 3 3 3 99.95 99.48 100 99.9 99.95

FRGC 3 3 7 3 3 99.83 99.85 99.82 99.8 99.85

FRGC 3 3 3 7 3 99.93 100 100 99.23 99.93

FRGC 3 3 3 3 7 99.93 99.93 99.94 99.88 97.83

FRLL 7 3 3 3 3 13.96 99.58 99.32 99.65 99.65

FRLL 3 7 3 3 3 99.23 99.09 98.91 99.37 99.44

FRLL 3 3 7 3 3 99.09 98.95 98.24 99.02 99.09

FRLL 3 3 3 7 3 99.51 99.44 99.19 99.16 99.58

FRLL 3 3 3 3 7 99.93 99.86 99.86 99.93 95.02

We propose a metric to measure the relative strength between morphing attacks.

The transferability of morphing attack α to β is defined as

T (α, β) = P (fα(Xβ) = 1 | fα(Xα) = 1) (4)

where Xα, Xβ are morphs created by α, β and fα is a detector trained on α.

The relative strength metric (RSM) from α to β is:

∆(α‖β) = log
(

T (α, β)
T (β, α)

)
(5)

(a) RSM on FRGC (b) RSM on FERET

Figure 5. Blue indicates strong strength and red indicates weak strength.

Conclusion

Novel state-the-of-the-art morphing attack with high visual fidelity.

Diffusion morphs are able to fool FR systems while retaining high visual fidelity.

Novel metric to compare the relative strength of morphing attacks.

Diffusion morphs are very difficult to detect if the detector is not trained against them.
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