
Feature Creation Towards the Detection of
Non-Control-Flow Hijacking Attacks

Zander W. Blasingame1, Chen Liu1, Xin Yao2

ICANN 2021
1Department of Electrical and Computer Engineering
Clarkson University
10 Clarkson Ave, Potsdam NY, 13699, USA
2Research Institute of Trustworthy Autonomous Systems
Southern University of Science and Technology
Shenzhen, Guangdong, China



Problem

• Non-control-flow hijacking attacks are becoming increasingly
prevalent

• They do not alter the execution of the program
• Which makes the difficult to detect

1



Solution

• Use Hardware Performance Counters (HPCs) to monitor program
• Use ML to compare current behavior to established baseline
• This can be used for detection

2



HPCs

3



Detection Architecture

4



Problem

• Very few or no samples from the attack
• Creates a very large imbalance in training data
• Leads to high False Negative Rates in classification

5



Use Genetic Programming (GP) to combat class
imbalances

5



Solution

• Use GP to create new features from previous features
• Use the Hellinger distance as the fitness function
• Implement the Hellinger distance to work with discrete samples

6



Datasets

Vulnerability Type Program Exploit Type

bugtraq ID: 41956 FS∗ ORZHTTPD ORZHTTPD_ROOTDIR Data leak
ORZHTTPD_LEAKADDR Mem leak

CVE-2013-2028 SBO† NGINX NGINX_ROOTDIR Data leak
NGINX_KEYLEAK Data leak

CVE-2014-3566 ED‡ OPENSSL POODLE Data leak
CVE-2015-0204 ED‡ OPENSSL FREAK Data leak
CVE-2015-0400 ED‡ OPENSSL LOGJAM Data leak

(∗) Format String (†) Stack Buffer Overflow (‡) Encryption Downgrade

7



Objective

• X is the feature space
• Feature creation function f : X → R

• Goal find function f that maximizes distance between the two
classes

8



GP Details

• Initial population size of 300
• Tournaments with three individuals
• Crossover and mutation with 80% and 10%
• Functions are created initially as trees with depth one or two
• Maximum bloat depth of 17
• Terminal node consists of

1. The original 12 features
2. Integer constant
3. Floating point constant
4. -1
5. ADD, SUB, MUL, DIV, MAX, MIN, NEG, COS, SIN, LOG and ABS

9



Fitness Function 𝟋 : (X → R) → R

9



Hellinger Distance

• Let X,Y be r.v.s denoting the feature vector and class label
• Let ρi denote the density function associated with P(f(X)|Y = i)
with 1 for normal and 0 for anomalous

• The discrete Hellinger distance is then

𝟋2[f] = 1
2

∑
a∈f(X )

(√
ρ1(a)−

√
ρ0(a)

)2

10



Implementation I

• Infeasible to evaluate distance over all of f(X )

• Two possible solutions
1. Evaluate over samples in the dataset

𝟋2[f] = 1
2Ea∼P(f(X ))

[(√
ρ1(a)−

√
ρ0(a)

)2]
i.e., taking an expectation with respect to P(f(X))

2. Or evaluate over a finite subset of f(X ), e.g., a uniformly discrete
subset on f(X )

11



Implementation II

• Is it advantageous to normalize the inputs to f?

12



Implementation III

• Prior work has suggested this form for a fitness criterion loosely
based on the Hellinger distance

𝟋2[f] = Ea∼P(f(X))

[(√
ρ1(a)P(Y = 1)

ρ(a) −

√
ρ0(a)P(Y = 0)

ρ(a)

)2
]

where ρ is the density of P(f(X))

13



Implementation IV

• Estimates of ρi are needed to calculate the distance
• Could use histograms of the samples to create ρ̂i

• Or use Kernel density estimation to create ρ̂i

14



Classifiers

• Support Vector Machine (SVM) with linear kernel
• SVM with radial basis function
• Neural network with softmax output

15



Experimental Procedure

1. Run the GP algorithm with the different Hellinger distance
implementations on the entire original dataset and select the
top-4 performing individuals, i.e., the programs that construct
the new features.

2. Create 5 pairs of new training and testing sets from the original
data using stratified k-fold cross-validation.

3. The individuals created by the GP algorithm are used to
construct new features. These new features are partitioned in
accordance to the scheme from the previous step.

16



Hellinger Implementation Variants

• The baseline variant is

𝟋2[f] = Ea∼P(f(X )

[(√
ρ̂1(a)−

√
ρ̂0(a)

)2
]

where ρ̂i is estimated via KDE
• The posterior variant uses the estimated posterior distributions
• The discrete variant uses histograms instead of KDE
• The full variant evaluates the distance over a resampled subset
of f(X )

• The unnromalized variant does not normalize the input features

17



Results I

Figure 1: Average ROC curve of classifiers using different Hellinger estimates
18



Results II

Figure 2: Average DET curve of classifiers using different Hellinger estimates
19



Results III

Figure 3: Average ROC curve of classifiers using different features
20



Results IV

Figure 4: Average DET curve of classifiers using different features
21



Summary

• Used the Hellinger distance as a fitness function to create new
features

• Studied different implementations of the Hellinger distance
• Using the unnormalized Hellinger GP to augment the original
features vastly improves the performance

22


