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Problem

• Non-control-flow hijacking attacks are becoming increasingly
prevalent

• They do not alter the execution of the program
• Which makes the difficult to detect
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Solution

• Use Hardware Performance Counters (HPCs) to monitor program
• Use ML to compare current behavior to established baseline
• This can be used for detection
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HPCs

3



Detection Architecture
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Problem

• Very few or no samples from the attack
• Creates a very large imbalance in training data
• Leads to high False Negative Rates in classification
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Use Genetic Programming (GP) to combat class
imbalances
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Solution

• Use GP to create new features from previous features
• Use the Hellinger distance as the fitness function
• Implement the Hellinger distance to work with discrete samples
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Datasets

Vulnerability Type Program Exploit Type

bugtraq ID: 41956 FS∗ ORZHTTPD ORZHTTPD_ROOTDIR Data leak
ORZHTTPD_LEAKADDR Mem leak

CVE-2013-2028 SBO† NGINX NGINX_ROOTDIR Data leak
NGINX_KEYLEAK Data leak

CVE-2014-3566 ED‡ OPENSSL POODLE Data leak
CVE-2015-0204 ED‡ OPENSSL FREAK Data leak
CVE-2015-0400 ED‡ OPENSSL LOGJAM Data leak

(∗) Format String (†) Stack Buffer Overflow (‡) Encryption Downgrade
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Objective

• X is the feature space
• Feature creation function f : X → R

• Goal find function f that maximizes distance between the two
classes
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GP Details

• Initial population size of 300
• Tournaments with three individuals
• Crossover and mutation with 80% and 10%
• Functions are created initially as trees with depth one or two
• Maximum bloat depth of 17
• Terminal node consists of

1. The original 12 features
2. Integer constant
3. Floating point constant
4. -1
5. ADD, SUB, MUL, DIV, MAX, MIN, NEG, COS, SIN, LOG and ABS
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Fitness Function 𝟋 : (X → R) → R
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Hellinger Distance

• Let X,Y be r.v.s denoting the feature vector and class label
• Let ρi denote the density function associated with P(f(X)|Y = i)
with 1 for normal and 0 for anomalous

• The discrete Hellinger distance is then

𝟋2[f] = 1
2

∑
a∈f(X )

(√
ρ1(a)−

√
ρ0(a)

)2
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Implementation I

• Infeasible to evaluate distance over all of f(X )

• Two possible solutions
1. Evaluate over samples in the dataset

𝟋2[f] = 1
2Ea∼P(f(X ))

[(√
ρ1(a)−

√
ρ0(a)

)2]
i.e., taking an expectation with respect to P(f(X))

2. Or evaluate over a finite subset of f(X ), e.g., a uniformly discrete
subset on f(X )
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Implementation II

• Is it advantageous to normalize the inputs to f?
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Implementation III

• Prior work has suggested this form for a fitness criterion loosely
based on the Hellinger distance

𝟋2[f] = Ea∼P(f(X))

[(√
ρ1(a)P(Y = 1)

ρ(a) −

√
ρ0(a)P(Y = 0)

ρ(a)

)2
]

where ρ is the density of P(f(X))
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Implementation IV

• Estimates of ρi are needed to calculate the distance
• Could use histograms of the samples to create ρ̂i

• Or use Kernel density estimation to create ρ̂i
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Classifiers

• Support Vector Machine (SVM) with linear kernel
• SVM with radial basis function
• Neural network with softmax output
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Experimental Procedure

1. Run the GP algorithm with the different Hellinger distance
implementations on the entire original dataset and select the
top-4 performing individuals, i.e., the programs that construct
the new features.

2. Create 5 pairs of new training and testing sets from the original
data using stratified k-fold cross-validation.

3. The individuals created by the GP algorithm are used to
construct new features. These new features are partitioned in
accordance to the scheme from the previous step.
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Hellinger Implementation Variants

• The baseline variant is

𝟋2[f] = Ea∼P(f(X )

[(√
ρ̂1(a)−

√
ρ̂0(a)

)2
]

where ρ̂i is estimated via KDE
• The posterior variant uses the estimated posterior distributions
• The discrete variant uses histograms instead of KDE
• The full variant evaluates the distance over a resampled subset
of f(X )

• The unnromalized variant does not normalize the input features
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Results I

Figure 1: Average ROC curve of classifiers using different Hellinger estimates
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Results II

Figure 2: Average DET curve of classifiers using different Hellinger estimates
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Results III

Figure 3: Average ROC curve of classifiers using different features
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Results IV

Figure 4: Average DET curve of classifiers using different features
21



Summary

• Used the Hellinger distance as a fitness function to create new
features

• Studied different implementations of the Hellinger distance
• Using the unnormalized Hellinger GP to augment the original
features vastly improves the performance
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