Feature Creation Towards the Detection of Non-Control-Flow Hijacking Attacks

$\,$ Zander W. Blasingame 1 , Chen Liu 1 , Xin Ya \rm{o}^2

ICANN 2021

¹Department of Electrical and Computer Engineering Clarkson University 10 Clarkson Ave, Potsdam NY, 13699, USA ²Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen, Guangdong, China

- *Non-control-flow* hijacking attacks are becoming increasingly prevalent
- They do not alter the execution of the program
- Which makes the difficult to detect
- Use Hardware Performance Counters (HPCs) to monitor program
- Use ML to compare current behavior to established baseline
- This can be used for detection

Performance Monitoring Unit

Hardware Performance Counters (HPCs)

- Special hardware registers ٠
- Over 200 measurable HW events \bullet

Why use HPCs:

- Capture raw execution behavior ¥
- Very fast to access \blacksquare
- Difficult for attackers to ٠

manipulate

Detection Architecture

- Very few or no samples from the attack
- Creates a very large imbalance in training data
- Leads to high False Negative Rates in classification

Use Genetic Programming (GP) to combat class imbalances

- Use GP to create new features from previous features
- Use the Hellinger distance as the fitness function
- Implement the Hellinger distance to work with discrete samples

- \cdot χ is the feature space
- Feature creation function *f* : *X →* R
- Goal find function *f* that maximizes distance between the two classes

GP Details

- Initial population size of 300
- Tournaments with three individuals
- Crossover and mutation with 80% and 10%
- Functions are created initially as trees with depth one or two
- Maximum bloat depth of 17
- Terminal node consists of
	- 1. The original 12 features
	- 2. Integer constant
	- 3. Floating point constant
	- 4. -1
	- 5. ADD, SUB, MUL, DIV, MAX, MIN, NEG, COS, SIN, LOG and ABS

Fitness Function $F : (\mathcal{X} \to \mathbb{R}) \to \mathbb{R}$

- Let *X, Y* be r.v.s denoting the feature vector and class label
- \cdot Let ρ_i denote the density function associated with $P(f(X) | Y = i)$ with 1 for normal and 0 for anomalous
- The discrete Hellinger distance is then

$$
F^{2}[f] = \frac{1}{2} \sum_{a \in f(\mathcal{X})} \left(\sqrt{\rho_1(a)} - \sqrt{\rho_0(a)} \right)^2
$$

- \cdot Infeasible to evaluate distance over all of $f(X)$
- Two possible solutions
	- 1. Evaluate over samples in the dataset

$$
F^{2}[f] = \frac{1}{2} \mathbb{E}_{a \sim P(f(\mathcal{X}))} \left[\left(\sqrt{\rho_1(a)} - \sqrt{\rho_0(a)} \right)^2 \right]
$$

i.e., taking an expectation with respect to *P*(*f*(*X*))

2. Or evaluate over a finite subset of $f(\mathcal{X})$, e.g., a uniformly discrete subset on $f(X)$

• Is it advantageous to normalize the inputs to *f*?

• Prior work has suggested this form for a fitness criterion loosely based on the Hellinger distance

$$
F^{2}[f] = \mathbb{E}_{a \sim P(f(X))} \left[\left(\sqrt{\frac{\rho_1(a)P(Y=1)}{\rho(a)}} - \sqrt{\frac{\rho_0(a)P(Y=0)}{\rho(a)}} \right)^2 \right]
$$

where ρ is the density of $P(f(X))$

- \cdot Estimates of ρ_i are needed to calculate the distance
- Could use histograms of the samples to create *ρ*ˆ*ⁱ*
- \cdot Or use Kernel density estimation to create $\hat{\rho}_i$
- Support Vector Machine (SVM) with linear kernel
- SVM with radial basis function
- Neural network with softmax output
- 1. Run the GP algorithm with the different Hellinger distance implementations on the entire original dataset and select the top-4 performing individuals, i.e., the programs that construct the new features.
- 2. Create 5 pairs of new training and testing sets from the original data using stratified *k*-fold cross-validation.
- 3. The individuals created by the GP algorithm are used to construct new features. These new features are partitioned in accordance to the scheme from the previous step.

Hellinger Implementation Variants

• The baseline variant is

$$
\mathcal{F}^{2}[f] = \mathbb{E}_{a \sim P(f(\mathcal{X})} \left[\left(\sqrt{\hat{\rho}_1(a)} - \sqrt{\hat{\rho}_0(a)} \right)^2 \right]
$$

where $\hat{\rho}_i$ is estimated via KDE

- The posterior variant uses the estimated posterior distributions
- The discrete variant uses histograms instead of KDE
- The full variant evaluates the distance over a resampled subset of $f(\mathcal{X})$
- The unnromalized variant does not normalize the input features

Results I

Figure 1: Average ROC curve of classifiers using different Hellinger estimates

Results II

Figure 2: Average DET curve of classifiers using different Hellinger estimates

Results III

Figure 3: Average ROC curve of classifiers using different features

Results IV

Figure 4: Average DET curve of classifiers using different features

- Used the Hellinger distance as a fitness function to create new features
- Studied different implementations of the Hellinger distance
- Using the unnormalized Hellinger GP to augment the original features vastly improves the performance