Feature Creation Towards the Detection of Non-Control-Flow Hijacking Attacks

Zander W. Blasingame¹, Chen Liu¹, Xin Yao²

ICANN 2021

 ¹ Department of Electrical and Computer Engineering Clarkson University
 ¹ Clarkson Ave, Potsdam NY, 13699, USA
 ² Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen, Guangdong, China

- *Non-control-flow* hijacking attacks are becoming increasingly prevalent
- They do not alter the execution of the program
- Which makes the difficult to detect

- Use Hardware Performance Counters (HPCs) to monitor program
- \cdot Use ML to compare current behavior to established baseline
- \cdot This can be used for detection

Performance Monitoring Unit

Hardware Performance Counters (HPCs)

- Special hardware registers
- · Over 200 measurable HW events

Why use HPCs:

- Capture raw execution behavior
- · Very fast to access
- Difficult for attackers to

manipulate

Detection Architecture

- $\cdot\,$ Very few or no samples from the attack
- Creates a very large imbalance in training data
- Leads to high False Negative Rates in classification

Use Genetic Programming (GP) to combat class imbalances

- $\cdot\,$ Use GP to create new features from previous features
- \cdot Use the Hellinger distance as the fitness function
- Implement the Hellinger distance to work with discrete samples

Vulnerability	Туре	Program	Exploit	Туре
bugtraq ID: 41956	FS*	orzHTTPd	ORZHTTPD_ROOTDIR ORZHTTPD_LEAKADDR	Data leak Mem leak
CVE-2013-2028	SBO†	NGINX	NGINX_ROOTDIR NGINX_KEYLEAK	Data leak Data leak
CVE-2014-3566 CVE-2015-0204 CVE-2015-0400	ED [‡] ED [‡] ED [‡]	OPENSSL OPENSSL OPENSSL	POODLE FREAK LOGJAM	Data leak Data leak Data leak
(*) Format String	g (†) Stack Buffer Overflow (‡) Encryption Downgrade			

- $\cdot \,\, \mathcal{X}$ is the feature space
- + Feature creation function $f \colon \mathcal{X} \to \mathbb{R}$
- Goal find function $f\,{\rm that}$ maximizes distance between the two classes

GP Details

- Initial population size of 300
- Tournaments with three individuals
- $\cdot\,$ Crossover and mutation with 80% and 10%
- $\cdot\,$ Functions are created initially as trees with depth one or two
- Maximum bloat depth of 17
- Terminal node consists of
 - 1. The original 12 features
 - 2. Integer constant
 - 3. Floating point constant
 - 4. -1
 - 5. ADD, SUB, MUL, DIV, MAX, MIN, NEG, COS, SIN, LOG and ABS

Fitness Function $F : (\mathcal{X} \to \mathbb{R}) \to \mathbb{R}$

- Let X, Y be r.v.s denoting the feature vector and class label
- Let ρ_i denote the density function associated with P(f(X)|Y=i) with 1 for normal and 0 for anomalous
- The discrete Hellinger distance is then

$$F^{2}[f] = \frac{1}{2} \sum_{a \in f(\mathcal{X})} \left(\sqrt{\rho_{1}(a)} - \sqrt{\rho_{0}(a)} \right)^{2}$$

- Infeasible to evaluate distance over all of $f(\mathcal{X})$
- Two possible solutions
 - 1. Evaluate over samples in the dataset

$$F^{2}[f] = \frac{1}{2} \mathbb{E}_{a \sim P(f(\mathcal{X}))} \left[\left(\sqrt{\rho_{1}(a)} - \sqrt{\rho_{0}(a)} \right)^{2} \right]$$

i.e., taking an expectation with respect to P(f(X))

 Or evaluate over a finite subset of f(X), e.g., a uniformly discrete subset on f(X) • Is it advantageous to normalize the inputs to *f*?

• Prior work has suggested this form for a fitness criterion loosely based on the Hellinger distance

$$F^{2}[f] = \mathbb{E}_{a \sim P(f(X))} \left[\left(\sqrt{\frac{\rho_{1}(a)P(Y=1)}{\rho(a)}} - \sqrt{\frac{\rho_{0}(a)P(Y=0)}{\rho(a)}} \right)^{2} \right]$$

where ρ is the density of P(f(X))

- Estimates of ρ_i are needed to calculate the distance
- Could use histograms of the samples to create $\hat{
 ho}_i$
- + Or use Kernel density estimation to create $\hat{
 ho}_i$

- Support Vector Machine (SVM) with linear kernel
- SVM with radial basis function
- Neural network with softmax output

- 1. Run the GP algorithm with the different Hellinger distance implementations on the entire original dataset and select the top-4 performing individuals, i.e., the programs that construct the new features.
- 2. Create 5 pairs of new training and testing sets from the original data using stratified *k*-fold cross-validation.
- 3. The individuals created by the GP algorithm are used to construct new features. These new features are partitioned in accordance to the scheme from the previous step.

Hellinger Implementation Variants

• The baseline variant is

$$F^{2}[f] = \mathbb{E}_{a \sim P(f(\mathcal{X})} \left[\left(\sqrt{\hat{\rho}_{1}(a)} - \sqrt{\hat{\rho}_{0}(a)} \right)^{2} \right]$$

where $\hat{\rho}_i$ is estimated via KDE

- · The posterior variant uses the estimated posterior distributions
- $\cdot\,$ The discrete variant uses histograms instead of KDE
- The full variant evaluates the distance over a resampled subset of $f(\mathcal{X})$
- The unnromalized variant does not normalize the input features

Results I

Figure 1: Average ROC curve of classifiers using different Hellinger estimates

Results II

Figure 2: Average DET curve of classifiers using different Hellinger estimates

Results III

Figure 3: Average ROC curve of classifiers using different features

Results IV

Figure 4: Average DET curve of classifiers using different features

- Used the Hellinger distance as a fitness function to create new features
- Studied different implementations of the Hellinger distance
- Using the unnormalized Hellinger GP to augment the original features vastly improves the performance