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Problem

Diffusion models use a learned score function, sy(x¢,t) = Vx log pr(x¢), or closely
related function like a noise-prediction network eg(x¢,t) &~ —o¢Vx log pt(x¢) to turn
noise from pp into samples from the data distribution py.

Sampling is done via the reverse-time SDE
2
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where ‘dt’ is a negative timestep and {V_Vt}te[O,T] Is the Wiener process as time flows
backwards.

The Probability Flow ODE [1] has the same marginal distributions as Eq. (1):
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Problem Statement

We wish to solve the following optimization problems for the ODE or SDE variants:
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Where £ : RY — R is some scalar-valued differentiable guidance function defined
on the output of the diffusion model.

To find the optimal x7, z, and 6 we perform gradient descent using the continuous
adjoint equations [2], i.e., we need to find
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Figure 1. A high-level overview of the AdjointDEIS solver to the continuous adjoint equations for
diffusion models. The sampling schedule consists of {t,}_, timesteps for the diffusion model and
{1}, timesteps for AdjointDEIS. The gradients a,(T') can be used to optimize x7 to find some
optimal x7.

The continuous adjoint equations for Eq. (4) are given by the IVP:
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This treats fg(x¢,2,t) as a black-box; however, we can exploit the special formula-
tion of diffusion ODEs to greatly simplify these equations.
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Simplified Formulation of the Continuous Adjoint Equations

Proposition 1 (Exact solution of adjoint diffusion ODEs). Given initial values |ax(t), az(t), ag(t)| at time t €
(0,T), the solution |ax(s), az(s),ag(s)] at time s € (t,T] of adjoint diffusion ODEs in Eq. (6) is
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We can construct k-th order solvers using multi-step methods to estimate the n-th derivative of the scaled
vector-Jacobian product, which we denote by

d" O€eg(xy, 2, \)
VI = 1 fafasn TR (10
d)\n ATX 8X)\ >\_>\t
Using a Taylor Expansion about A\; and letting h = A — A\; we can rewrite Eq. (/) as
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AdjointDEIS-1. Given an initial augmented adjoint state |ax(t), az(t), ag(t)] at ttime t € (0,T), the solution
ax(s),az(s),ag(s)] at time s € (¢, T] is approximated by
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Theoretical Results

For the AdjointDEIS solvers, we make similar assumptions to Lu et al. [3].

Assumption 1. The total derivatives of the vector-Jacobian products V(”>({x/\, z,0}, ) as a function of A
exist and are continuous for 0 < n < k — 1 (and hence bounded).

Assumption 2. The function ey(x, z, t) is continuous in t and uniformly Lipschitz and continuously differen-
tiable w.r.t. its first parameter x.

Assumption 3. hypqax = maxj<j<pshj = O(1/M).
Assumption 4. p; > c > 0foralli=1,..., M and some constant c.

Theorem 1 (AdjointDEIS-k as a k-th order solver). Assume the function eg(x¢, z, t) and its associated vector-
Jacobian products follow the regularity conditions detailed above, then for k = 1,2, AdjointDEIS-k is a k-th
order solver for adjoint diffusion ODEs, i.e., for the sequence {ax(t;) Ml computed by AdjointDEIS-k, the
global truncation error at time T satisfies ax(ty;) —ax(T) = O(h2,,.), where hmas = max) < i< p(At; = At;_q)-
Likewise, AdjointDEIS-k is a k-th order solver for the estimated gradients w.r.t. z and 6.

Theorem 2. let f : RYx R — R%be in C +and g: R — R pein 61 Let £ : R% — R be a scalar-valued

differentiable function. Let wy : [0, T] — R" be a w-dimensional \/\/lener process. Let x : [0,T] — R% solve
the Stratonovich SDE

dxy = f(x¢,t) dt + g(t) o dwy,

with initial condition xq. Then the adjoint process ax(t) = 0L(x)/dx¢ is a strong solution to the backwards-
in-time ODE
TOf
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Proposition 2 (Exact solution of adjoint diffusion SDEs). Given initial values |ax(t), az(t), ag(t)] at time t
(0,T), the solution |ax(s), az(s), ag(s)| at time s € (t,T] of adjoint diffusion SDEs is
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Experimental Results
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Figure 2. Example of guided morphed face generation with AdjointDEIS on the FRLL dataset.

We demonstrate the use of AdjointDEIS in a guided generation problem of face
morphing. The face morphing attack seeks to create an image which triggers a
false accept with both identities in the targeted Face Recognition (FR) system.

We use AdjointDEIS to find the optimal (xp,z) in the Diffusion Morph (DiM)
pipeline [4]. We evaluate against three SOTA FR systems: ArcFace, AdaFace, and
ElasticFace. We measure the performance with the Mated Morph Presentation
Match Rate (MMPMR) metric which measures how many morphs are successful in
fooling the FR system.

Table 1. Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR(1)
Morphing Attack NFE(]) AdaFace ArcFace ElasticFace
Webmorph - 97.96 96.93 98.36
MIPGAN-| - 72.19 77.51 66.46
MIPGAN-I| - 70.55 72.19 65.24
DiM-A 350 92.23 90.18 93.05
Fast-DiM 300 92.02 90.18 93.05
Morph-PIPE 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

Key Insights

Exponential Integrators. The continuous adjoint equations preserve the same
semi-linear structure of diffusion ODEs/SDEs allowing the use of numerical
methods based on exponential integrators.

Adjoint diffusion SDEs are actually ODEs. The continuous adjoint equations for
diffusion SDEs are greatly simplified allowing us to express them as essentially
an ODE.

Efficient gradients. \We can calculate the gradients using k-th order solvers with
discretization steps independent of the sampling process.
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