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Problem

Diffusion models use a learned score function, sθ(xt, t) ≈ ∇x log pt(xt), or closely
related function like a noise-prediction network εθ(xt, t) ≈ −σt∇x log pt(xt) to turn
noise from pT into samples from the data distribution p0.

Sampling is done via the reverse-time SDE

dxt = [f (t)xt + g2(t)
σt

ε(xt, z, t)] dt + g(t) dw̄t, (1)

where ‘dt’ is a negative timestep and {w̄t}t∈[0,T ] is theWiener process as time flows
backwards.

The Probability Flow ODE [1] has the same marginal distributions as Eq. (1):

dxt

dt
= fθ(xt, z, t) := f (t)xt + g2(t)

2σt
ε(xt, z, t). (2)

Problem Statement

Wewish to solve the following optimization problems for the ODE or SDE variants:

arg min
xT ,z,θ

L
(

xT +
∫ 0

T
f (t)xt + g2(t)

σt
εθ(xt, z, t) dt +

∫ 0

T
g(t) dw̄t

)
, (3)

arg min
xT ,z,θ

L
(

xT +
∫ 0

T
f (t)xt + g2(t)

2σt
εθ(xt, z, t) dt

)
. (4)

Where L : Rd → R is some scalar-valued differentiable guidance function defined
on the output of the diffusion model.

To find the optimal xT , z, and θ we perform gradient descent using the continuous
adjoint equations [2], i.e., we need to find

ax(t) := ∂L
∂xt

, az(T ) := ∂L
∂z

, aθ(T ) := ∂L
∂θ

. (5)

Overview
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Figure 1. A high-level overview of the AdjointDEIS solver to the continuous adjoint equations for

diffusion models. The sampling schedule consists of {tn}N
n=0 timesteps for the diffusion model and

{t̃n}M
n=0 timesteps for AdjointDEIS. The gradients ax(T ) can be used to optimize xT to find some

optimal x∗
T .

The continuous adjoint equations for Eq. (4) are given by the IVP:

ax(0) = ∂L
∂x0

,
dax
dt

(t) = −ax(t)>∂fθ(xt, z, t)
∂xt

,

az(0) = 0,
daz
dt

(t) = −ax(t)>∂fθ(xt, z, t)
∂z

,

aθ(0) = 0,
daθ

dt
(t) = −ax(t)>∂fθ(xt, z, t)

∂θ
. (6)

This treats fθ(xt, z, t) as a black-box; however, we can exploit the special formula-
tion of diffusion ODEs to greatly simplify these equations.

Simplified Formulation of the Continuous Adjoint Equations

Proposition 1 (Exact solution of adjoint diffusion ODEs). Given initial values [ax(t), az(t), aθ(t)] at time t ∈
(0, T ), the solution [ax(s), az(s), aθ(s)] at time s ∈ (t, T ] of adjoint diffusion ODEs in Eq. (6) is

ax(s) = αt

αs
ax(t) + 1

αs

∫ λs

λt

α2
λe−λax(λ)>∂εθ(xλ, z, λ)

∂xλ
dλ, (7)

az(s) = az(t) +
∫ λs

λt

αλe−λax(λ)>∂εθ(xλ, z, λ)
∂z

dλ, (8)

aθ(s) = aθ(t) +
∫ λs

λt

αλe−λax(λ)>∂εθ(xλ, z, λ)
∂θ

dλ. (9)

We can construct k-th order solvers using multi-step methods to estimate the n-th derivative of the scaled
vector-Jacobian product, which we denote by

V(n)(x; λt) = dn

dλn

[
α2

λax(λ)>∂εθ(xλ, z, λ)
∂xλ

]
λ=λt

. (10)

Using a Taylor Expansion about λt and letting h = λs − λt we can rewrite Eq. (7) as

ax(s) = αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+ 1
αs

k−1∑
n=0

V(n)(x; λt)︸ ︷︷ ︸
Derivatives

Approximated

∫ λs

λt

(λ − λt)n

n!
e−λ dλ︸ ︷︷ ︸

Coefficients
Analytically computed

+ O(hk+1).︸ ︷︷ ︸
Higher-order errors

Omitted

(11)

AdjointDEIS-1. Given an initial augmented adjoint state [ax(t), az(t), aθ(t)] at time t ∈ (0, T ), the solution
[ax(s), az(s), aθ(s)] at time s ∈ (t, T ] is approximated by

ax(s) = αt

αs
ax(t) + σs(eh − 1)

α2
t

α2
s
ax(t)>∂εθ(xt, z, t)

∂xt
,

az(s) = az(t) + σs(eh − 1)αt

αs
ax(t)>∂εθ(xt, z, t)

∂z
,

aθ(s) = aθ(t) + σs(eh − 1)αt

αs
ax(t)>∂εθ(xt, z, t)

∂θ
. (12)

Theoretical Results

For the AdjointDEIS solvers, we make similar assumptions to Lu et al. [3].

Assumption 1. The total derivatives of the vector-Jacobian products V(n)({xλ, z, θ}, λ) as a function of λ
exist and are continuous for 0 ≤ n ≤ k − 1 (and hence bounded).

Assumption 2. The function εθ(x, z, t) is continuous in t and uniformly Lipschitz and continuously differen-

tiable w.r.t. its first parameter x.
Assumption 3. hmax := max1≤j≤M hj = O(1/M).
Assumption 4. ρi > c > 0 for all i = 1, . . . , M and some constant c.

Theorem 1 (AdjointDEIS-k as a k-th order solver).Assume the function εθ(xt, z, t) and its associated vector-
Jacobian products follow the regularity conditions detailed above, then for k = 1, 2, AdjointDEIS-k is a k-th
order solver for adjoint diffusion ODEs, i.e., for the sequence {ãx(ti)}M

i=1 computed by AdjointDEIS-k, the

global truncation error at time T satisfies ãx(tM )−ax(T ) = O(h2
max), where hmax = max1≤j≤M (λti−λti−1).

Likewise, AdjointDEIS-k is a k-th order solver for the estimated gradients w.r.t. z and θ.

Theorem 2. Let f : Rd ×R → Rd be in C∞,1
b and g : R → Rd×w be in C1

b . Let L : Rd → R be a scalar-valued

differentiable function. Let wt : [0, T ] → Rw be a w-dimensional Wiener process. Let x : [0, T ] → Rd solve

the Stratonovich SDE

dxt = f (xt, t) dt + g(t) ◦ dwt,

with initial condition x0. Then the adjoint process ax(t) := ∂L(xT )/∂xt is a strong solution to the backwards-

in-time ODE

dax(t) = −ax(t)> ∂f

∂xt
(xt, t) dt. (13)

Proposition 2 (Exact solution of adjoint diffusion SDEs).Given initial values [ax(t), az(t), aθ(t)] at time t ∈
(0, T ), the solution [ax(s), az(s), aθ(s)] at time s ∈ (t, T ] of adjoint diffusion SDEs is

ax(s) = αt

αs
ax(t) + 2

αs

∫ λs

λt

α2
λe−λax(λ)>εθ(xλ, z, λ)

∂xλ
dλ, (14)

az(s) = az(t) + 2
∫ λs

λt

αλe−λax(λ)>∂εθ(xλ, z, λ)
∂z

dλ, (15)

aθ(s) = aθ(t) + 2
∫ λs

λt

αλe−λax(λ)>∂εθ(xλ, z, λ)
∂θ

dλ. (16)

Experimental Results

(a) Identity a (b) Guided face morph (c) Identity b

Figure 2. Example of guided morphed face generation with AdjointDEIS on the FRLL dataset.

We demonstrate the use of AdjointDEIS in a guided generation problem of face

morphing. The face morphing attack seeks to create an image which triggers a

false accept with both identities in the targeted Face Recognition (FR) system.

We use AdjointDEIS to find the optimal (xT , z) in the Diffusion Morph (DiM)
pipeline [4]. We evaluate against three SOTA FR systems: ArcFace, AdaFace, and

ElasticFace. We measure the performance with the Mated Morph Presentation

Match Rate (MMPMR) metric which measures how many morphs are successful in

fooling the FR system.

Table 1. Vulnerability of different FR systems across different morphing attacks on the SYN-MAD

2022 dataset. FMR = 0.1%.

MMPMR(↑)
Morphing Attack NFE(↓) AdaFace ArcFace ElasticFace

Webmorph - 97.96 96.93 98.36

MIPGAN-I - 72.19 77.51 66.46

MIPGAN-II - 70.55 72.19 65.24

DiM-A 350 92.23 90.18 93.05

Fast-DiM 300 92.02 90.18 93.05

Morph-PIPE 2350 95.91 92.84 95.5

DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39

DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

Key Insights

Exponential Integrators. The continuous adjoint equations preserve the same

semi-linear structure of diffusion ODEs/SDEs allowing the use of numerical

methods based on exponential integrators.

Adjoint diffusion SDEs are actually ODEs. The continuous adjoint equations for

diffusion SDEs are greatly simplified allowing us to express them as essentially

an ODE.

Efficient gradients. We can calculate the gradients using k-th order solvers with
discretization steps independent of the sampling process.
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