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Diffusion Models

Data —  Remove information by adding noise — > Noise

w

Data <«—— Generate samples by adding information — Noise
e Forward diffusion process is governed by the [td6 SDE

dx¢ = f(t)x¢ dt + g(t) dwy, (1)

where {w;};c(o,7 is the standard Wiener process on [0, 7.
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Diffusion Models

Data <«—— Generate samples by adding information
e The diffusion equation can be reversed with

dx; = [f(t)x: — g°(t)Vx log p(x¢)] dt + g(t) dwe, (2)

where W, is the reverse Wiener process and 'dt’ is a negative timestep.
e The marginal distributions p;(x) follow the probability flow ODE!

dXt
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Diffusion Models

Data <«—— Generate samples by adding information —— Noise
e Often the Variance Preserving (VP) framework is used where the drift and diffusion
coefficients are

dlog oy 9 do? dloga; ,
= —— = —t—3—=— 4
for some noise schedule ay, oy
e Sampling the forward trajectory then simplifies to
Xt = apXo +orer € ~ N(0,I) (5)
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Diffusion Models

3

Data — Remove information by adding noise — > Noise

w

Data <«<—— Generate samples by adding information —— Noise
e Train the model via score-matching to learn Vy log p;(x;).

e This is similar to learning the noise €, i.e.,

€0(x¢,t) = —0¢Vx log p(xy). (6)
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Problem Statement

e Solve the following optimization problem:

0 2

t
arg min E(XT —I—/ ft)x + g ()
x7,2,0 T 2Ut

€o(xy,2,t) dt) ) (7)

e Or in the SDE case:

2 0

0 ¢
arg min E(XT + [ fO)x: + g )Gg(Xt,Z,t) dt —|—/
T (oF

x7,2,0 t ar

g(t) dwt>. (8)

e To backpropagate through an ODE/SDE solve we solve the continuous adjoint equations.
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AdjointDEIS

-
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Diffusion Sampling
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Continuous Adjoint Equations

o Let f, describe a parameterized neural field of the probability flow ODE, defined as

g>(t)
20't

f@(xt7 Z7f’) = f(t>xt + 69(Xt7 Zat)' (9)
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Continuous Adjoint Equations

o Let f, describe a parameterized neural field of the probability flow ODE, defined as

g>(t)
20',5

fo(xe,2,t) = f(t)x: + €o(x¢,2,t). (9)

e Then f,(x¢,2,t) describes a neural ODE which admits an adjoint state, ax := 0L/0x;
(and likewise for a,(t) and ag(t)), which solve the continuous adjoint equations [6,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

_ ok dag 7 0fg(xi,2.0)
=)= 9x¢’ dt (8) = —ax(®) ox; ’
a4(0) =0, das ) _ _a 7028

dt 0z
da@ T&f@(xhz,t)

ag(0) =0, E(t) = —ax(t) ~— 0 (10)
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Continuous Adjoint Equations

e Let f, describe a parameterized neural field of the probability flow ODE, defined as

f@(xtazvt) = Xt + 2 Eg(Xt,Z,t). (9)
Ot

Black box fy(x¢,2,t) looses known information of f(t) and g(t).

e Then f,(x;,2,t) describes a neural ODE which admits an adjoint state, ax = 9L/0x;
(and likewise for a,(t) and ay(t)), which solve the continuous adjoint equations [6,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

B aiﬁ day +0fo(x¢,2,1)

(0 = 7 a0 = A ==
a,(0) =0, d;z (t) = _ax(t)TW’

B dag . Of o(x¢,2,1)
ag(0) =0, = —ax(f)T6T~ (10)
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The Continuous Adjoint Equations are also Semi-linear

e Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

CL& B g2(t) +0€p(x¢,2,1)
3 (8 =—f(t)ax(t) - %0, ax(t) o (11)
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The Continuous Adjoint Equations are also Semi-linear

e Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

g*(t)
20't

dax
dt

ax(t)Taeﬁ(g;;ZJ)’ (11)

(t) = —f(Dax(t) —
e Then, the exact solution at time s given time ¢t < s is found to be

s 2
BN S (COR L 2 f(r)ard (u) T €9(Xu, 2, ) d 12
ax(s)=e ax(t) /f e 2. ax(u) Ox. u. (12)

linear non-linear
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The Continuous Adjoint Equations are also Sem

e Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

g*(t)
20't

dax
dt

ax(t)Taee(gf{;ZJ)’ (11)

() = =f(t)ax(t) —

e Then, the exact solution at time s given time ¢t < s is found to be

s 2
— Sty dry (4 _/ 2 f(r)ard (u) T €0(Xus 2%, 1) du. 12
ax(s)=e ax(t) t e 2. ax(u) ~ ox. U (12)
linear non-linear

e Use the log-SNR trick? to further simplify the exact solution with \; = log(c; /o).
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Simplified Exact Solutions

Proposition 1 (Exact solution of adjoint diffusion ODEs)
Given initial values [ax(t),a5(t),ag(t)] at timet € (0,T'), the solution [ax(s), ax(s),ag(s)] at
time s € (t,T) of adjoint diffusion ODEs in Eq. (10) is

1 e
an(s) = Dan(t) + / aie—kaxw%”f” ar, (13)

T 869(X)\, z, )\)
0z
As

ag(s) = ap(t) +/ aAG_AaX(A)Tw
At a0

a,(s) = a,(t) + /:S axe May(N) dA, (14)

dA. (15)
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Designing Bespoke ODE Solvers

e We denote the n-th derivative of the scaled vector-Jacobian product by

d» 0 \Z, A
v (x; M) = i {@iax()\fq(;;/f)] . (16)
A=)

e Use Taylor Expansion on Eq. (13) to obtain and letting h = A\; — \; yields

1 k—1

As o n
ay(s) = 4 — Zv(n)(x; )\t)/ M

——e M dA+ O(RM). (17)
Qs 3 n:

n=0
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Designing Bespoke ODE Solvers

e We denote the n-th derivative of the scaled vector-Jacobian product by

d” O€g(x,2,\)
V™) (x: — — |a2a, TYCO\ AN 4 A) ) 16

() = gy [ 2D (16

e Use Taylor Expansion on Eq. (13) to obtain and letting h = A\; — \; yields

k—1 As
1 S (A=A)"
ay(s) = %ax(t) = / #e*A dA+O(RF). (17)
a as = A n!

—_——

Linear term
Exactly computed
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Designing Bespoke ODE Solvers

e We denote the n-th derivative of the scaled vector-Jacobian product by
T aeQ(X)\a z, )‘)

a7 20 Ex ]H; (16)

n

VI (x5 0) = i

e Use Taylor Expansion on Eq. (13) to obtain and letting h = A\; — \; yields

k—1
! PR ARIC DY) +O(h*h. (17)

6%
ax(s) = —ax(t) +—
Os Qs n=0
=
Linear term Derivatives
Approximated

Exactly computed
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Designing Bespoke ODE Solvers

e We denote the n-th derivative of the scaled vector-Jacobian product by

dn O€g(Xx, 2, \)
V(n) ) = 2 . A T y 4y ) 16
(i) = iz [ofme (TGN (16)
e Use Taylor Expansion on Eq. (13) to obtain and letting h = A; — \; yields
k-1 A n
o Qy 1 () (v C(A=A)"
a(s) = Sax®) 4o §_O: VO (x; M) A QoA or any
——— n= : ——
Linear term Derivatives Coefficients
pproximated Analytically computed
(17)

Exactly computed

e And analogously for a,(t) and ag(t).
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Certain Adjoint SDEs are Actually ODEs

Theorem 1

Let f:RYx R — R% be in C;>" and g : R — R¥¥ beinC}. Let L: R - R bea
scalar-valued differentiable function. Let wy : [0,T] — R" be a w-dimensional Wiener process.
Let x : [0,T] — R? solve the Stratonovich SDE

dx; = f(x¢,t) dt +g(t) o dwy,

with initial condition xq. Then the adjoint process ax(t) := OL(xr)/0x; is a strong solution to
the backwards-in-time ODE

T Of

day(t) = —ax(t) O,

(x1,t) dt. (18)
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ODE Solvers for the Adjoint Diffusion SDE

e The Probability Flow ODEs are related to the diffusion SDEs by the manipulations of the
Kolmogorov equations®.

3Vang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. URL
https://openreview.net/forun?id=PxTIG12RRHS.

9/16


https://openreview.net/forum?id=PxTIG12RRHS

ODE Solvers for the Adj

e The Probability Flow ODEs are related to the diffusion SDEs by the manipulations of the
Kolmogorov equations3.

e The drift term is identical to the vector field of the ODE, sans a factor of two:

2 + g(t) dwy. (19)
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ODE Solvers for the Adjoint Diffusion SDE

e The Probability Flow ODEs are related to the diffusion SDEs by the manipulations of the

Kolmogorov equations?.

e The drift term is identical to the vector field of the ODE, sans a factor of two:

e By Theorem 1 the adjoint SDE evolves with an ODE with vector field
—ay (t)T0Ffy(x¢,2,t)/0%;.
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ODE Solvers for the Adjoint Diffusion SDE

e The Probability Flow ODEs are related to the diffusion SDEs by the manipulations of the

Kolmogorov equations?.

e The drift term is identical to the vector field of the ODE, sans a factor of two:

2

dx; = f(t)x: + gl
Ot

=fo(xt,2,t)

)Eg(Xt, z,t) dt 4 g(t) dw,. (19)

e By Theorem 1 the adjoint SDE evolves with an ODE with vector field
—ay (t)T0Ffy(x¢,2,t)/0%;.

e Therefore, we can use the same bespoke ODE solvers for adjoint diffusion ODEs with the
added factor of 2!

3Vang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. URL
https://openreview.net/forun?id=PxTIG12RRHS.
9/16


https://openreview.net/forum?id=PxTIG12RRHS

Experiment - Face Morphing

(a) Identity a (b) Face morphing with AdjointDEIS (c) Identity b

Figure 1: Create a morphed face which causes a Face Recognition (FR) system to accept it with both
identities.
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Experiment - Face Morphing

e Goal is to adversarially attack an FR system by finding the x7,z which creates the
optimal morph.
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e Goal is to adversarially attack an FR system by finding the x7,z which creates the
optimal morph.

e Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.
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Experiment - Face Morphing

e Goal is to adversarially attack an FR system by finding the x7,z which creates the
optimal morph.

e Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.

e Use AdjointDEIS massively improves the performance of Diffusion Morphs (DiM).

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR [9](1)
Morphing Attack NFE({) AdaFace [7] ArcFace [4] ElasticFace [3]
Webmorph [5] - 97.96 96.93 98.36
MIPGAN-I [11] - 72.19 77.51 66.46
MIPGAN-II [11] - 70.55 72.19 65.24
DiM-A [2] 350 92.23 90.18 93.05
Fast-DiM [1] 300 92.02 90.18 93.05
Morph-PIPE [12] 2350 95.91 92.84 955
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39

DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75
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e We propose a highly simplified formulation of the exact solution to the continuous adjoint
equations for diffusion ODEs/SDEs.

e We propose a bespoke family of k-th order solvers for diffusion ODEs/SDEs to obtain
gradients efficiently.

e We show that the adjoint SDE evolves with a much simpler ODE.

-ﬁ@

R oy o o] ;3'4"4;" 3
&,Jﬁ @“f’fﬁ.rs.;é%‘a.

(a) Paper (b) Code
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