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Diffusion Models

• Forward diffusion process is governed by the Itô SDE

dxt = f(t)xt dt+ g(t) dwt, (1)

where {wt}t∈[0,T ] is the standard Wiener process on [0, T ].
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Diffusion Models

• The diffusion equation can be reversed with

dxt = [f(t)xt − g2(t)∇x log pt(xt)] dt+ g(t) dw̄t, (2)

where w̄t is the reverse Wiener process and ‘dt’ is a negative timestep.

• The marginal distributions pt(x) follow the probability flow ODE1

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log pt(xt). (3)
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Diffusion Models

• Often the Variance Preserving (VP) framework is used where the drift and diffusion
coefficients are

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t , (4)

for some noise schedule αt, σt

• Sampling the forward trajectory then simplifies to

xt = αtx0 + σtϵt ϵt ∼ N (0, I) (5)
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Diffusion Models

• Train the model via score-matching to learn ∇x log pt(xt).

• This is similar to learning the noise ϵ, i.e.,

ϵθ(xt, t) ≈ −σt∇x log pt(xt). (6)
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Problem Statement

• Solve the following optimization problem:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t) dt

)
. (7)

• Or in the SDE case:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

σt
ϵθ(xt, z, t) dt+

∫ 0

T

g(t) dw̄t

)
. (8)

• To backpropagate through an ODE/SDE solve we solve the continuous adjoint equations.
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AdjointDEIS

Diffusion Sampling

AdjointDEIS
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Continuous Adjoint Equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t). (9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [6,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)
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The Continuous Adjoint Equations are also Semi-linear

• Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

dax
dt

(t) = −f(t)ax(t)︸ ︷︷ ︸
Linear

− g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (11)

• Then, the exact solution at time s given time t < s is found to be

ax(s) = e
∫ t
s
f(τ) dτax(t)︸ ︷︷ ︸

linear

−
∫ s

t

e
∫ u
s

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du︸ ︷︷ ︸

non-linear

. (12)

• Use the log-SNR trick2 to further simplify the exact solution with λt := log(αt/σt).
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Simplified Exact Solutions

Proposition 1 (Exact solution of adjoint diffusion ODEs)

Given initial values [ax(t),az(t),aθ(t)] at time t ∈ (0, T ), the solution [ax(s),az(s),aθ(s)] at
time s ∈ (t, T ] of adjoint diffusion ODEs in Eq. (10) is

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ∂ϵθ(xλ, z, λ)

∂xλ
dλ, (13)

az(s) = az(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z
dλ, (14)

aθ(s) = aθ(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂θ
dλ. (15)
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Designing Bespoke ODE Solvers

• We denote the n-th derivative of the scaled vector-Jacobian product by

V(n)(x;λt) =
dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

. (16)

• Use Taylor Expansion on Eq. (13) to obtain and letting h = λs − λt yields

ax(s) =
αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+
1

αs

k−1∑
n=0

V(n)(x;λt)

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ+O(hk+1). (17)
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.
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• And analogously for az(t) and aθ(t).
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Certain Adjoint SDEs are Actually ODEs

Theorem 1
Let f : Rd × R → Rd be in C∞,1

b and g : R → Rd×w be in C1
b . Let L : Rd → R be a

scalar-valued differentiable function. Let wt : [0, T ] → Rw be a w-dimensional Wiener process.
Let x : [0, T ] → Rd solve the Stratonovich SDE

dxt = f(xt, t) dt+ g(t) ◦ dwt,

with initial condition x0. Then the adjoint process ax(t) := ∂L(xT )/∂xt is a strong solution to
the backwards-in-time ODE

dax(t) = −ax(t)
⊤ ∂f

∂xt
(xt, t) dt. (18)
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ODE Solvers for the Adjoint Diffusion SDE

• The Probability Flow ODEs are related to the diffusion SDEs by the manipulations of the
Kolmogorov equations3.

• The drift term is identical to the vector field of the ODE, sans a factor of two:

(19)

• By Theorem 1 the adjoint SDE evolves with an ODE with vector field
−ax(t)

⊤∂fθ(xt, z, t)/∂xt.

• Therefore, we can use the same bespoke ODE solvers for adjoint diffusion ODEs with the
added factor of 2!

3Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.
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Experiment - Face Morphing

(a) Identity a (b) Face morphing with AdjointDEIS (c) Identity b

Figure 1: Create a morphed face which causes a Face Recognition (FR) system to accept it with both
identities.

10 / 16



Experiment - Face Morphing

• Goal is to adversarially attack an FR system by finding the xT , z which creates the
optimal morph.

• Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.

• Use AdjointDEIS massively improves the performance of Diffusion Morphs (DiM).

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR [9](↑)

Morphing Attack NFE(↓) AdaFace [7] ArcFace [4] ElasticFace [3]

Webmorph [5] - 97.96 96.93 98.36
MIPGAN-I [11] - 72.19 77.51 66.46
MIPGAN-II [11] - 70.55 72.19 65.24
DiM-A [2] 350 92.23 90.18 93.05
Fast-DiM [1] 300 92.02 90.18 93.05
Morph-PIPE [12] 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

11 / 16



Experiment - Face Morphing

• Goal is to adversarially attack an FR system by finding the xT , z which creates the
optimal morph.

• Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.

• Use AdjointDEIS massively improves the performance of Diffusion Morphs (DiM).

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR [9](↑)

Morphing Attack NFE(↓) AdaFace [7] ArcFace [4] ElasticFace [3]

Webmorph [5] - 97.96 96.93 98.36
MIPGAN-I [11] - 72.19 77.51 66.46
MIPGAN-II [11] - 70.55 72.19 65.24
DiM-A [2] 350 92.23 90.18 93.05
Fast-DiM [1] 300 92.02 90.18 93.05
Morph-PIPE [12] 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

11 / 16



Experiment - Face Morphing

• Goal is to adversarially attack an FR system by finding the xT , z which creates the
optimal morph.

• Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.

• Use AdjointDEIS massively improves the performance of Diffusion Morphs (DiM).

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR [9](↑)

Morphing Attack NFE(↓) AdaFace [7] ArcFace [4] ElasticFace [3]

Webmorph [5] - 97.96 96.93 98.36
MIPGAN-I [11] - 72.19 77.51 66.46
MIPGAN-II [11] - 70.55 72.19 65.24
DiM-A [2] 350 92.23 90.18 93.05
Fast-DiM [1] 300 92.02 90.18 93.05
Morph-PIPE [12] 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

11 / 16



Summary

• We propose a highly simplified formulation of the exact solution to the continuous adjoint
equations for diffusion ODEs/SDEs.

• We propose a bespoke family of k-th order solvers for diffusion ODEs/SDEs to obtain
gradients efficiently.

• We show that the adjoint SDE evolves with a much simpler ODE.

(a) Paper (b) Code
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