

Diffusion for the Generation of Face Morphs

Zander W. Blasingame and Chen Liu

05.06.2024

Department of Electrical and Computer Engineering Clarkson University 8 Clarkson Ave, Potsdam NY, 13699, USA

Face Morphing

Figure 1: Images from FRLL dataset. Morph generated by us.

1

Generative AI Morph Creation Pipeline

Figure 2: General morph creation pipeline using generative AI models.

Diffusion Models

Figure 3: Forward Diffusion Process

3

Reverse Diffusion Process

Reverse SDE has an associated ODE¹

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = \mu(\mathbf{x}, t) - \frac{1}{2}\sigma^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t) \tag{1}$$

¹Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations, 2021.

Learning The Reverse Diffusion SDE

• Often $\mu(\mathbf{x}_t,t)=0$ and $\sigma(t)=\sqrt{2t}$ so forward sampling is

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{x}_t = \mathbf{x}_0 + t \cdot \epsilon \tag{2}$$

- · Learning the score $abla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ amounts to learning $oldsymbol{\epsilon}$
- Train a UNet, $\epsilon_{\theta}(\mathbf{x}_t, t)$, to learn the added noise
- · I.e., solve

$$\hat{\theta} = \underset{\theta}{\operatorname{arg min}} d(\boldsymbol{\epsilon}, \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t))$$
(3)

for some distance metric $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, e.g., ℓ^2 distance

Conditional Generation

- Learn an encoder $\mathbf{z} = E(\mathbf{x}_0)$
- \cdot Condition the noise prediction model on ${f z}$
- \cdot To get a consistent \mathbf{x}_T run ODE solver in reverse from \mathbf{x}_0^2

²K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn, "Diffusion autoencoders: Toward a meaningful and decodable representation," in Proceedings of CVPR, June 2022

Face Morphing with Diffusion

Figure 4: Face morphing pipeline

- \cdot Encode bona fide images with E
- Pre-morph bona fide images with ξ
- Encode pre-morphed images by running ODE solver backwards
- Morph encoded images and latents, $\ell_{\mathcal{X}}$ and $\ell_{\mathcal{Z}}$
- Run ODE solver to get morphed image

Impact of Interpolation Strategies

 \mathbf{X}_T

(c) Pixel-wise pre-morph, slerp for \mathbf{x}_T

Figure 5: Morphed image generated by different Diffusion attack variants on FRLL.

Visual Comparison to Other Morphing Attacks

Figure 6: Comparison across different morphing algorithms of two identity pairs from the FRLL dataset.

Evaluation of Visual Fidelity

Table 1: FID across different morphing attacks. Lower is better.

Morphing Attack	FRLL	FRGC	FERET	
StyleGAN2	45.19	86.41	41.91	
FaceMorpher	91.97	88.14	79.58	
OpenCV	85.71	100.02	91.94	
MIPGAN-II	66.41	115.96	70.88	
Diffusion	42.63	64.16	50.45	

 Fréchet Inception Distance (FID) is a widely used metric for image synthesis task

Quantitative Comparison

Table 2: MMPMR at FMR = 0.1% across different morphing attacks.

	FRLL			FRGC			
Morphing Attack	FaceNet	VGGFace2	ArcFace	FaceNet	VGGFace2	ArcFace	
StyleGAN2	4.69	6.05	19.89	0.18	0.85	5.49	
FaceMorpher	11.26	36.4	45.03	0.51	9.15	41.28	
OpenCV	17.34	40.93	47.7	0.14	12.16	3.99	
MIPGAN-II	30.96	26.74	56.52	3.12	7.94	33.54	
Diffusion	28.14	35.37	88.09	2.68	8.47	46.74	

• The ProdAvg Mated Morphed Presentation Match Rate (MMPMR)

$$M(\gamma) = \mathbb{E}_{x_{ab} \sim \mathbb{P}_M} \left[\prod_{k \in \{a,b\}} \mathbb{E}_{x \sim \mathbb{P}_{k \setminus x_{ab}}} \left[\|F(x_{ab}) - F(x)\|_2 < \gamma \right] \right]$$
(4)

where γ is the acceptance threshold, \mathbb{P}_M is the distribution of morphs, \mathbb{P}_k , is the distribution of bona fide images for identity k, and $F: \mathcal{X} \to V$ is the FR system

Strength of Diffusion Morphing Attacks

• The transferability of morphing attack α to β is defined as

$$T(\alpha, \beta) = P(f^{\alpha}(X^{\beta}) = 1 \mid f^{\alpha}(X^{\alpha}) = 1)$$
(5)

where X^{α}, X^{β} are morphs created by α, β and f^{α} is a detector

• The relative strength metric (RSM) from α to β is:

$$\Delta(\alpha \| \beta) = \log\left(\frac{T(\alpha, \beta)}{T(\beta, \alpha)}\right) \tag{6}$$

Ablation Study

Table 3: Ablation study on validation accuracy.

Dataset	Training Attack				Validation Attack					
	Diffusion	FaceMorpher	MIPGAN-II	OpenCV	StyleGAN2	Diffusion	FaceMorpher	MIPGAN-II	OpenCV	StyleGAN2
FERET	Х	1	/	/	/	72.73	99.23	100	99.95	99.33
FERET	/	×	/	/	1	99.9	76.39	100	99.85	99.64
FERET	✓	✓	X	/	1	99.69	99.38	100	99.95	99.54
FERET	✓	✓	/	X	/	99.74	99.48	100	99.74	99.43
FERET	✓	✓	✓	1	×	99.74	98.56	99.9	99.74	87.89
FRGC	×	1	/	1	/	75.89	99.98	99.97	99.9	99.93
FRGC	✓	X	/	/	/	99.95	99.48	100	99.9	99.95
FRGC	✓	✓	×	/	/	99.83	99.85	99.82	99.8	99.85
FRGC	✓	✓	/	X	/	99.93	100	100	99.23	99.93
FRGC	✓	✓	✓	1	×	99.93	99.93	99.94	99.88	97.83
FRLL	X	1	/	1	✓	13.96	99.58	99.32	99.65	99.65
FRLL	✓	×	/	/	1	99.23	99.09	98.91	99.37	99.44
FRLL	✓	✓	×	/	/	99.09	98.95	98.24	99.02	99.09
FRLL	✓	✓	/	X	1	99.51	99.44	99.19	99.16	99.58
FRLL	/	1	/	/	X	99.93	99.86	99.86	99.93	95.02

Summary of Diffusion for Face Morphing

- Advantages
 - 1. Better visual fidelity
 - 2. Can achieve a stronger attack
 - 3. Hard to detect as a novel attack
 - More flexible generation as generation parameters can change per iteration
- Disadvantages
 - 1. Slower inference speed due to multiple iterations
 - 2. Greater computational requirements

Conclusions

- Face morphs generated via Diffusion are a powerful threat to FR systems
- Diffusion-based morphs have visual fidelity which make them harder to detect
- · Morph detectors trained on this attack can be more resilient
- Our article "Leveraging Diffusion For Strong and High Quality Face Morphing Attacks" was recently accepted in IEEE TBIOM, https://ieeexplore.ieee.org/document/10381591

