

Diffusion Morphs (DiM)

Diffusion is all you need for highly effective face morphs

Zander W. Blasingame Stephanie Schuckers Chen Liu

Clarkson University Potsdam, NY, USA

11.06.2024

Introduction

Face Morphing

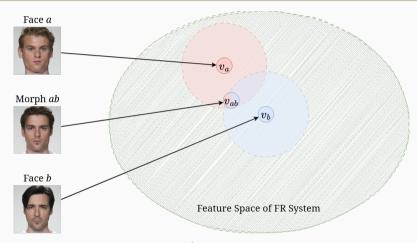
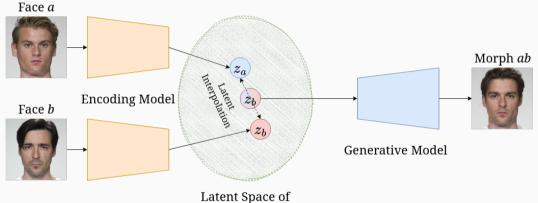


Figure 1: Images from FRLL¹ dataset. Morph generated via DiM.

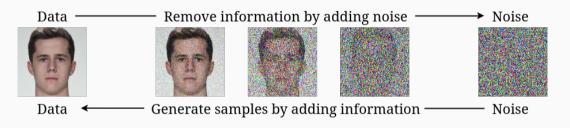
¹Lisa DeBruine and Benedict Jones. "Face Research Lab London Set". In: (May 2017). DOI: 10.6084/m9.figshare.5047666.v5. URL: https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666.

Morph Creation Pipeline



Generative Model

Figure 2: General morph creation pipeline using generative models.



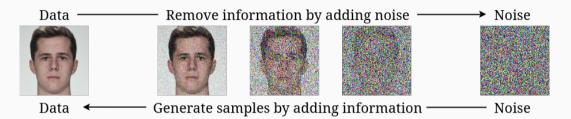
• Forward diffusion process is governed by the Itô SDE

$$d\mathbf{x}_t = f(t)\mathbf{x}_t dt + g(t) d\mathbf{w}_t, \tag{1}$$

where $\{\mathbf{w}_t\}_{t \in [0,T]}$ is the standard Wiener process on [0,T].

²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.

Diffusion Models



• The diffusion equation can be reversed with

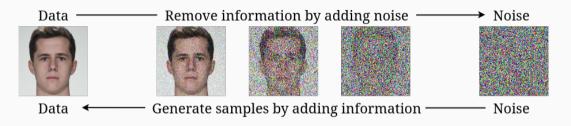
$$d\mathbf{x}_t = [f(t)\mathbf{x}_t - g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)] dt + g(t) d\bar{\mathbf{w}}_t,$$
(2)

where $\bar{\mathbf{w}}_t$ is the *reverse* Wiener process and 'dt' is a *negative* timestep.

• The marginal distributions $p_t(\mathbf{x})$ follow the probability flow ODE²

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = f(t)\mathbf{x}_t - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t).$$
(3)

²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.



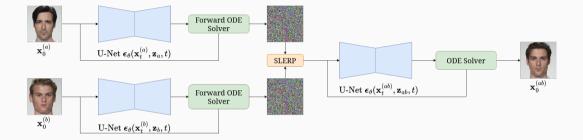
- Train the model via score-matching to learn $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$.
- This is similar to learning the noise ϵ , *i.e.*,

$$\epsilon_{\theta}(\mathbf{x}_t, t) \approx -\sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), \tag{4}$$

with $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$.

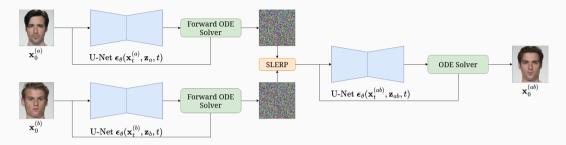
²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.

Diffusion Morphs (DiM)



• Encode bona fide images:

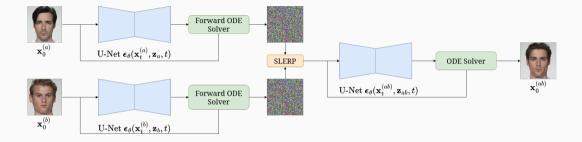
$$\mathbf{z}_{\{a,b\}} = E(\mathbf{x}_0^{(\{a,b\})}).$$
(5)



- Let $\Phi(\mathbf{x}_0, \mathbf{z}, f_{\theta}, \{t_n\}_{n=1}^N) \mapsto \mathbf{x}_T$ denote a numerical ODE solver with:
 - 1. Initial image \mathbf{x}_0 ,
 - 2. Latent representation of \mathbf{x}_0 , $\mathbf{z} = E(\mathbf{x}_0)$,
 - 3. Denoising U-Net conditioned on \mathbf{z} , $\epsilon_{\theta}(\mathbf{x}_t, \mathbf{z}, t)$,
 - 4. The PF ODE given by

$$\boldsymbol{f}_{\theta}(\mathbf{x}_t, \mathbf{z}, t) = f(t)\mathbf{x}_t + \frac{g^2(t)}{2\sigma_t}\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{z}, t),$$
(6)

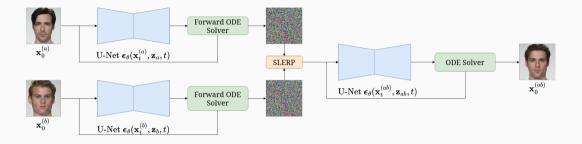
5. N timesteps $\{t_n\}_{n=1}^N \subseteq [0,T]$.



• Encode images solving the PF ODE as time runs forwards:

$$\mathbf{x}_{T}^{(\{a,b\})} = \Phi(\mathbf{x}_{0}^{(\{a,b\})}, \mathbf{z}_{\{a,b\}}, \boldsymbol{f}_{\theta}, \{t_{n}\}_{n=1}^{N_{F}}),$$
(7)

with N_F encoding steps and $t_n < t_{n+1}$.

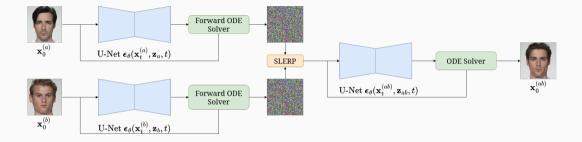


• Morph the latent representations:

$$\mathbf{x}_{T}^{(ab)} = \operatorname{slerp}(\mathbf{x}_{T}^{(a)}, \mathbf{x}_{T}^{(b)}; \gamma), \tag{8}$$

$$\mathbf{z}_{ab} = \operatorname{lerp}(\mathbf{z}_a, \mathbf{z}_b; \gamma), \tag{9}$$

by a factor of $\gamma = 0.5$.



• Create morph by solving the PF ODE as time runs backwards:

$$\mathbf{x}_{0}^{(ab)} = \Phi(\mathbf{x}_{T}^{(ab)}, \mathbf{z}_{ab}, \boldsymbol{f}_{\theta}, \{\tilde{t}_{n}\}_{n=1}^{N}),$$
(10)

with N sampling steps and $\tilde{t}_n > \tilde{t}_{n+1}.$

Visual Comparison to Other Morphing Attacks

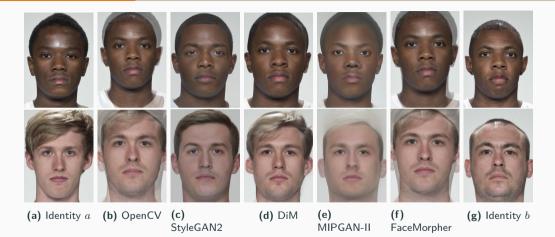


Figure 3: Comparison across different morphing algorithms of two identity pairs from the FRLL dataset.

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset. FMR = 0.1%.

	MMPMR (↑)				
Morphing Attack	AdaFace [8]	ArcFace [6]	ElasticFace [4]		
FaceMorpher [7]	89.78	87.73	89.57		
OpenCV [7]	94.48	92.43	94.27		
MIPGAN-I [13]	72.19	77.51	66.46		
MIPGAN-II [13]	70.55	72.19	65.24		
DiM [3]	92.23	90.18	93.05		

• Mated Morph Presentation Match Rate (MMPMR) [11]:

$$M(\delta) = \frac{1}{M} \sum_{n=1}^{M} \left\{ \left[\min_{n \in \{1, \dots, N_m\}} S_m^n \right] > \delta \right\},\tag{11}$$

where δ is the verification threshold, S_m^n is the similarity score of the *n*-th subject of morph m, N_m is the total number of contributing subjects to morph m, and M is the total number of morphed images.

	Included in the Training Set				Detection Accuracy (\downarrow)					
Dataset	DiM	FaceMorpher	MIPGAN-II	OpenCV	StyleGAN2	DiM	FaceMorpher	MIPGAN-II	OpenCV	StyleGAN2
	×	1	1	1	1	72.73	99.23	100	99.95	99.33
FERET [9]	1	×	1	1	1	99.9	76.39	100	99.85	99.64
	1	1	×	1	1	99.69	99.38	100	99.95	99.54
	1	1	1	×	1	99.74	99.48	100	99.74	99.43
	~	1	1	1	×	99.74	98.56	99.9	99.74	87.89
	×	1	1	1	1	75.89	99.98	99.97	99.9	99.93
	1	×	1	1	1	99.95	99.48	100	99.9	99.95
FRGC [10]	1	1	×	1	1	99.83	99.85	99.82	99.8	99.85
	1	1	1	×	1	99.93	100	100	99.23	99.93
	~	1	1	1	×	99.93	99.93	99.94	99.88	97.83
FRLL [5]	×	1	1	1	1	13.96	99.58	99,32	99.65	99.65
	1	×	1	1	1	99.23	99.09	98,91	99.37	99.44
	1	1	×	1	1	99.09	98.95	98.24	99.02	99.09
	1	1	1	×	1	99.51	99.44	99.19	99.16	99.58
	1	1	1	1	×	99.93	99.86	99.86	99.93	95.02

Table 2: Ablation study on the ability to detect morphing attacks.

- DiM creates morphs with high visual fidelity.
- DiM outperforms GAN-based morphs.
- DiM is difficult to detect if not explicitly trained against.
- Our article "Leveraging Diffusion For Strong and High Quality Face Morphing Attacks" was accepted in IEEE TBIOM³.

³Zander W. Blasingame and Chen Liu. "Leveraging Diffusion for Strong and High Quality Face Morphing Attacks". In: IEEE Transactions on Biometrics, Behavior, and Identity Science 6.1 (2024), pp. 118–131. DOI: 10.1109/TBIOM.2024.3349857.

Greedy-DiM

- MIPGAN⁴ showed the power in using guided optimization for face morphing.
- MIPGAN far outperforms the unguided GAN architecture.
- Can we do this for DiMs?
- It is difficult to find the optimal $\mathbf{x}_T^{(ab)}$ and \mathbf{z}_{ab} in DiMs.
- Morph-PIPE solves this via brute force search⁵.
- Can we do better?

⁴ Haoyu Zhang et al. "MIPGAN—Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN". In: IEEE Transactions on Biometrics, Behavior, and Identity Science 3.3 (2021), pp. 365–383. DOI: 10.1109/TBIOM.2021.3072349.

⁵Haoyu Zhang et al. "Morph-PIPE: Plugging in Identity Prior to Enhance Face Morphing Attack Based on Diffusion Model". In: Norwegian Information Security Conference (NISK). 2023.

Yes, by being greedy

	DiM [3]	Fast-DiM [1]	Morph-PIPE [14]	Ours (Greedy-DiM)
ODE solver Forward ODE solver	DDIM DiffAE	DPM++ 2M DDIM	DDIM DiffAE	DDIM DiffAE
Number of sampling steps	100	50	2100	20
Heuristic function Search strategy	×	×	\mathcal{L}^*_{ID} Brute-force search	\mathcal{L}_{ID}^{*} Greedy optimization
Search space Optimal solution in search space	Ø ×	Ø	Set of 21 blend values 0	Image space 1

Table 3: Comparison of existing DiM methods in the literature and our proposed algorithm.

$$\mathcal{L}_{ID} = d(v_{ab}, v_a) + d(v_{ab}, v_b), \tag{12}$$

$$\mathcal{L}_{diff} = \left| d(v_{ab}, v_a) - d(v_{ab}, v_b) \right|,\tag{13}$$

$$\mathcal{L}_{ID}^* = \mathcal{L}_{ID} + \mathcal{L}_{diff},\tag{14}$$

where $v_a = F(\mathbf{x}_0^{(a)}), v_b = F(\mathbf{x}_0^{(b)}), v_{ab} = F(\mathbf{x}_0^{(ab)})$, and $F : \mathcal{X} \to V$ is an FR system which embeds images into a vector space V which is equipped with a measure of distance, d.

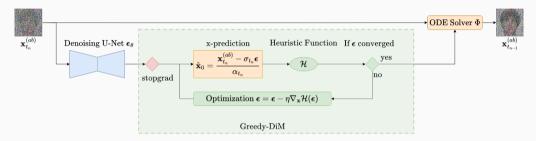


Figure 4: Overview of a single step of the Greedy-DiM* algorithm. Proposed changes highlighted in green.

• During each step greedily solve for the best predicted noise, ϵ .

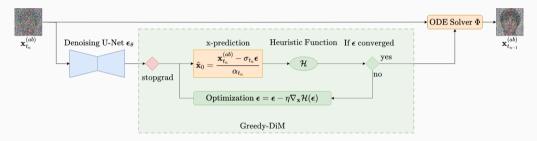


Figure 4: Overview of a single step of the Greedy-DiM* algorithm. Proposed changes highlighted in green.

• Take prediction from model
$$\boldsymbol{\epsilon} = \operatorname{stopgrad}(\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}^{(ab)}, \mathbf{z}_{ab}, t)).$$

Greedy-DiM*

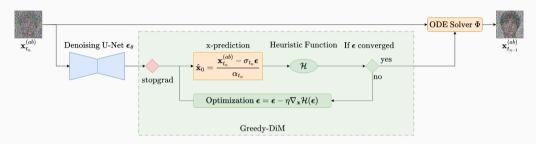


Figure 4: Overview of a single step of the Greedy-DiM* algorithm. Proposed changes highlighted in green.

• Perform a one-shot prediction of \mathbf{x}_0 via:

$$\hat{\mathbf{x}}_0 = \frac{\mathbf{x}_t^{(ab)} - \sigma_t \epsilon}{\alpha_t}.$$
(15)

Greedy-DiM*

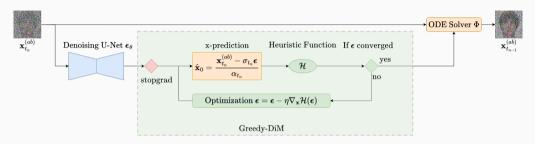


Figure 4: Overview of a single step of the Greedy-DiM* algorithm. Proposed changes highlighted in green.

• Perform gradient descent on ϵ via:

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon} - \eta \nabla_{\mathbf{x}} \mathcal{H}(\hat{\mathbf{x}}_0). \tag{16}$$

• Use the optimal ϵ^* to then find the next step $\mathbf{x}^{(ab)}_s$, s < t.

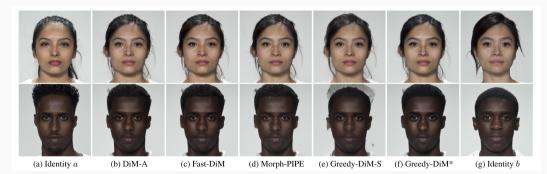


Figure 5: Comparison of DiM morphs on the FRLL dataset.

Table 4: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset. FMR = 0.1%.

		MMPMR(↑)				
Morphing Attack	NFE (\downarrow)	AdaFace [8]	ArcFace [6]	ElasticFace [4]		
FaceMorpher [7]	-	89.78	87.73	89.57		
Webmorph [7]	-	97.96	96.93	98.36		
OpenCV [7]	-	94.48	92.43	94.27		
MIPGAN-I [13]	-	72.19	77.51	66.46		
MIPGAN-II [13]	-	70.55	72.19	65.24		
DiM [3]	350	92.23	90.18	93.05		
Fast-DiM [1]	300	92.02	90.18	93.05		
Fast-DiM-ode [1]	150	91.82	88.75	91.21		
Morph-PIPE [14]	2350	95.91	92.84	95.5		
Greedy-DiM* [2]	270	100	100	100		

Table 5: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset. FMR = 0.01%.

		MMPMR(↑)				
Morphing Attack	NFE (\downarrow)	AdaFace [8]	ArcFace [6]	ElasticFace [4]		
FaceMorpher [7]	-	66.05	64.01	70.96		
Webmorph [7]	-	77.3	79.55	85.69		
OpenCV [7]	-	58.9	62.58	71.98		
MIPGAN-I [13]	-	15.75	23.52	21.88		
MIPGAN-II [13]	-	11.04	19.22	17.79		
DiM [3]	350	58.9	58.69	67.28		
Fast-DiM [1]	300	55.83	55.42	65.85		
Fast-DiM-ode [1]	150	54.19	53.58	63.8		
Morph-PIPE [14]	2350	62.37	61.76	71.78		
Greedy-DiM* [2]	270	85.89	91.62	96.11		

- SOTA performance on SYN-MAD 2022 dataset.
- Adds only a little overhead to vanilla DiM.
- $\bullet\,$ Guiding heuristic ${\cal H}$ can be swapped for another differentiable function.
- Our paper "Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs" was accepted at IJCB 2024⁶.

⁶Zander W. Blasingame and Chen Liu. "Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs". In: 2024 IEEE International Joint Conference on Biometrics (IJCB). Sept. 2024, pp. 1–10.

Questions?

Code and project page for Greedy-DiM

Further reading about DiM models

References i

References

- Zander W. Blasingame and Chen Liu. "Fast-DiM: Towards Fast Diffusion Morphs". In: IEEE Security & Privacy (2024), pp. 2–13. DOI: 10.1109/MSEC.2024.3410112.
- [2] Zander W. Blasingame and Chen Liu. "Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs". In: 2024 IEEE International Joint Conference on Biometrics (IJCB). Sept. 2024, pp. 1–10.
- [3] Zander W. Blasingame and Chen Liu. "Leveraging Diffusion for Strong and High Quality Face Morphing Attacks". In: *IEEE Transactions on Biometrics, Behavior, and Identity Science* 6.1 (2024), pp. 118–131. DOI: 10.1109/TBIOM.2024.3349857.
- [4] Fadi Boutros et al. "ElasticFace: Elastic Margin Loss for Deep Face Recognition". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. June 2022, pp. 1578–1587.

References ii

- [5] Lisa DeBruine and Benedict Jones. "Face Research Lab London Set". In: (May 2017). DOI: 10.6084/m9.figshare.5047666.v5. URL: https: //figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666.
- [6] Jiankang Deng et al. "Arcface: Additive angular margin loss for deep face recognition". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 4690–4699.
- [7] Marco Huber et al. "SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data". In: 2022 IEEE International Joint Conference on Biometrics (IJCB). 2022, pp. 1–10. DOI: 10.1109/IJCB54206.2022.10007950.
- [8] Minchul Kim, Anil K Jain, and Xiaoming Liu. "AdaFace: Quality Adaptive Margin for Face Recognition". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.
- [9] P. Phillips et al. "The FERET database and evaluation procedure for face-recognition algorithms". In: *Image Vis. Comput.* 16 (1998), pp. 295–306.

References iii

- P.J. Phillips et al. "Overview of the face recognition grand challenge". In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
 Vol. 1. 2005, 947–954 vol. 1. DOI: 10.1109/CVPR.2005.268.
- Ulrich Scherhag et al. "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and Vulnerability Reporting". In: 2017 International Conference of the Biometrics Special Interest Group (BIOSIG). 2017, pp. 1–7. DOI: 10.23919/BIOSIG.2017.8053499.
- [12] Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.
- [13] Haoyu Zhang et al. "MIPGAN—Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN". In: *IEEE Transactions on Biometrics, Behavior, and Identity Science* 3.3 (2021), pp. 365–383. DOI: 10.1109/TBIOM.2021.3072349.

[14] Haoyu Zhang et al. "Morph-PIPE: Plugging in Identity Prior to Enhance Face Morphing Attack Based on Diffusion Model". In: Norwegian Information Security Conference (NISK). 2023.