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State optimization

End-to-end guidance

Motivation

Consider the usual flow model, let (Xo, X1) ~ p(x¢)q(x;) Where g(x) is
the target distribution and p(xy) is the prior distribution. Define X; as
X; = a; X + 0: X, for schedule (a;, 07). Then, the vector field of the affine

conditional flow ®;(x|x;) = ayax1 + orx 1S given by

ui(x) = Ela; X5 + 6: Xo| X; = x]. (1)
Assume that wY is trained to zero loss, so u! = u;.

Problem statement. Find the optimal trajectory, i.e., given a continu-
ously differentiable loss function, £ € C'(R% R), find the minimizer

min £ (:co + /1 uf(wr) dr) : (2)
0

Lo

Posterior guidance. We can use the gradient of the denoiser a:flt(m) =

E[X|X; = x] for guidance [3], i.e., for some iteration x, in the numerical

scheme
) = 20 _ v (:138 (™ ) . ©

1|t

End-to-end guidance. Alternatively, optimize the initial point = [ 1, 2], i.e.,

2 =2 v L (0f, @), @

where CDg,l is the flow map from 0 to 1 induced by uf. This gradient can be
found by backproping through the numerical ODE solver (discretize-then-
optimize (DTO)) or by solving the continuous adjoint equations (optimize-
then-discretize (OTD)) [4].

The greedy strategy

We can view the posterior guidance techingue as a greedy strategy of the
end-to-end guidance techinque. In particular, we can view it as a single
large Euler step with step size h = y; — y; with y; = o/ 0.

Theorem 1 (Greedy as an Euler scheme). For some trajectory state x;
at time t, the greedy gradient given by V;L.L(azf't(w)) |S:

1. a DTO scheme with an explicit Euler step of size h = y; — y;, and
2. an OTD scheme with implicit Euler step of size h = y; — y;.

Next, we consider how the output of the flow model will change under
greedy guidance, I.e.,

x'=x—nV,L (a:%t(ac)) . (5)

Proposition 2 (Dynamics of greedy gradient guidance). Consider the
standard affine Gaussian probability paths model trained to zero loss.
The Gateaux differential of & at some time t € [0, 1] in the direction of

the gradient V£ <w9 (:13)) is given by

1|t

53 )1 (@) = Vo), (2) Vo] () Va, L(1). (6)

Theorem 3 (Greedy convergence). For affine probability paths, if there

exists a sequence of states m,f") at time t such that it converges to the

locally optimal solution a:f”(m,f")) — . Then the solution, @ﬁl(m§">),
converges to a neighborhood of size O(h*) centered at .
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Control signal optimization

Posterior guidance

Beyond Euler

What if we take more than an Euler step when performing posterior guid-
ance, perhaps the midpoint method?

Theorem 4 (Truncation error of single-step gradients). Let ® be an
explict Runge-Kutta solver of order « > 0 of a flow model with flow
@Y, (). Then for any ¢ € [0, 1],

|9.901(2) - Voyu(a)| = 0he*), 7

Corollary 4.1 (Convergence of a a-th order posterior gradient). For
affine probability paths, if there exists a sequence of states a:lf”) at time
t such that it converges to the locally optimal solution <I>t,1(£v§n)) — .

Then solution, ®§1(m§”>), converges to a neighborhood of size O(h**!)
centered at 7.

where h=1—t.

Numerical experiments
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Figure 1. Visualization of controlled generated molecules for various polarizability («)
levels. Top row uses a DTO scheme; bottom row uses posterior guidance.

Table 1. Quantitative evaluation of conditional molecule generation. The MAE is
reported for each molecule property (lower is better).

Property a Ae  eHOMO €LUMO M Cy
Unit Bohr meV meV meV D K?rilol

Greedy (Euler) 11.282 1265 725 1092 1.559 6.469
Greedy (2-step Euler) 5.377 1275 560 1204 1.563 2.975
Greedy (midpoint) 5.313 1196 599 1057 1.417 2.967

DTO 1404 401 176 373 0.372 0.866

FQUiFM 90525 1494 622 1523 1.628 6.689

Lower bound 0.10 64 39 46 0.043 0.040
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