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Motivation

Consider the usual flow model, let (X0,X1) ∼ ? (x0)@(x1) where @(x) is
the target distribution and ? (x0) is the prior distribution. Define XC as

XC = UCX1 +fCX0, for schedule (UC, fC). Then, the vector field of the affine

conditional flow ΦC (x|x1) = UCx1 + fCx is given by

uC (x) = �[ ¤UCX1 + ¤fCX0 |XC = x] . (1)

Assume that u\
C is trained to zero loss, so u\

C = uC .

Problem statement. Find the optimal trajectory, i.e., given a continu-

ously differentiable loss function, L ∈ C1(ℝ3 ;ℝ), find the minimizer

min
x0

L
(
x0 +

∫ 1

0
u\
g (xg) dg

)
. (2)

Posterior guidance. We can use the gradient of the denoiser x\
1|C (x) =

�[X1 |XC = x] for guidance [3], i.e., for some iteration x= in the numerical

scheme

x(:+1)
= = x(:)

= − [∇L
(
x\
1|C (x

(:)
= )

)
. (3)

End-to-end guidance. Alternatively, optimize the initial point x0 [1, 2], i.e.,

x(:+1)
0 = x(:)

0 − [∇L
(
Φ\
0,1(x

(:)
0 )

)
, (4)

where Φ\
0,1 is the flow map from 0 to 1 induced by u\

C . This gradient can be

found by backproping through the numerical ODE solver (discretize-then-

optimize (DTO)) or by solving the continuous adjoint equations (optimize-

then-discretize (OTD)) [4].

The greedy strategy

We can view the posterior guidance techinque as a greedy strategy of the

end-to-end guidance techinque. In particular, we can view it as a single

large Euler step with step size ℎ = W1 − WC with WC = UC/fC .

Theorem 1 (Greedy as an Euler scheme). For some trajectory state xC

at time C , the greedy gradient given by ∇xL(x\
1|C (x)) is:

1. a DTO scheme with an explicit Euler step of size ℎ = W1 − WC , and

2. an OTD scheme with implicit Euler step of size ℎ = W1 − WC .

Next, we consider how the output of the flow model will change under

greedy guidance, i.e.,

x′ = x − [∇xL
(
x\
1|C (x)

)
. (5)

Proposition 2 (Dynamics of greedy gradient guidance). Consider the

standard affine Gaussian probability paths model trained to zero loss.

The Gateaux differential of x at some time C ∈ [0, 1] in the direction of
the gradient ∇xL

(
x\
1|C (x)

)
is given by

X
G
xΦ

\
C,1(x) = −∇xΦ

\
C,1(x)∇xx

\
1|C (x)

>∇x1L(x1). (6)

Theorem 3 (Greedy convergence). For affine probability paths, if there

exists a sequence of states x(=)
C at time C such that it converges to the

locally optimal solution x\
1|C (x

(=)
C ) → x∗

1. Then the solution, Φ
\
C,1(x

(=)
C ),

converges to a neighborhood of size O(ℎ2) centered at x∗
1.

Beyond Euler

What if we take more than an Euler step when performing posterior guid-

ance, perhaps the midpoint method?

Theorem 4 (Truncation error of single-step gradients). Let � be an

explict Runge-Kutta solver of order U > 0 of a flow model with flow
Φ\
B,C (x). Then for any C ∈ [0, 1],


∇xΦ

\
C,1(x) − ∇x�C,1(x)




 = O(ℎU+1), (7)

where ℎ = 1 − C .

Corollary 4.1 (Convergence of a U-th order posterior gradient). For

affine probability paths, if there exists a sequence of states x(=)
C at time

C such that it converges to the locally optimal solution �C,1(x(=)
C ) → x∗

1.

Then solution, Φ\
C,1(x

(=)
C ), converges to a neighborhood of size O(ℎU+1)

centered at x∗
1.

Numerical experiments
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Figure 1. Visualization of controlled generated molecules for various polarizability (U)
levels. Top row uses a DTO scheme; bottom row uses posterior guidance.

Table 1. Quantitative evaluation of conditional molecule generation. The MAE is

reported for each molecule property (lower is better).

Property U ΔY YHOMO YLUMO ` �E

Unit Bohr2 meV meV meV D cal
K·mol

Greedy (Euler) 11.282 1265 725 1092 1.559 6.469

Greedy (2-step Euler) 5.377 1275 560 1204 1.563 2.975

Greedy (midpoint) 5.313 1196 599 1057 1.417 2.967

DTO 1.404 401 176 373 0.372 0.866

EquiFM 9.525 1494 622 1523 1.628 6.689

Lower bound 0.10 64 39 46 0.043 0.040
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