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e Consider q(X7) which models real-world data
e Consider some tractable p(Xj)
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Consider q(X;) which models real-world data
Consider some tractable p(Xj)
Consider the flow ® € C (R x R% R?) which satisfies

d
&q)t,l () = u (Pp1 ()

We want to find a flow (or vector field) such that
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Consider q(X;) which models real-world data
Consider some tractable p(Xj)
Consider the flow ® € C (R x R% R?) which satisfies

d

— ;1 (@) = u (P 1 (x
T 11(x) = ur (Pr1(x))
We want to find a flow (or vector field) such that
®,1(Xo) ~ q(X1)

Then we aim to find 0 such that

uf (z) ~ u(x)

(1)

(2)

(3)
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® Consider an Euler scheme with steps {tn}fzo and step size h
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e Consider an Euler scheme with steps {tn}QLO and step size h

e Now take Euler steps..

N =zN-1 +hud_ | (zN-1)
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Definition 1 (Problem statement). Given some 7 € [0,1) and step size regime
{t1 <tp <...<ty =1} solve:

Find a sequence {x, )} which minimizes £(zy),
q n=1

. 4
subject to Tpi1 = P(tpsts bt Th). (4)
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Gradient descent?
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Need V(0L (¢{(x))
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Discretize-then-optimize (DTO)
e Simplest approach, just backprop through the solver
® Pros: Accuracy of gradients, fast, and easy to implement.

e Cons: Memory intensive O(n), optimization w.r.t. discretization and not
continuous ideal
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Discretize-then-optimize (DTO)
e Simplest approach, just backprop through the solver
® Pros: Accuracy of gradients, fast, and easy to +implement.

e Cons: Memory intensive O(n), optimization w.r.t. discretization and not
continuous ideal

Optimize-then-discretize (0TD)
e T.e., the adjoint method, numerically solve another ODE
® Pros: Memory efficiency (7(1), flexibility

® Cons: Computational cost, truncation errors
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® Recall the target prediction formula

zy)(x) = E[X1| X, = z] (4)
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® Recall the target prediction formula

zy)(x) = E[X1| X, = z] (4)

e Use this estimate of the posterior to perform guidance,

VeL(xi):(x)) (5)
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We view posterior guidance as a greedy strategy of end-to-end guidance
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0C-Flow (Wang et al. 2025) |

Control signal

optimization |_| FlowGrad (X. Liu et al. 2023) |

Implicit diffusion (Marion et al. 2025) |

optimization
o —| D-Flow (Ben-Hamu et al. 2024) |
: —| AdjointDEIS (Blasingame and C. Liu 2024) |
v —| AdjointDPM (Pan et al. 2024) |

UGD (Bansal et al. 2023)

I
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Proposition 1 (Exact solution of affine probability paths). Given an initial
value of @5 at time s € [0,1] the solution x; at time t € [0,1] of an affine
probability path is:

16

Ot 0

Ty = —xs + crt/ xy, (xy) dy, ©)
Os Ys

where y; = /0y .
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® Consider the Taylor expansion of Eq. (6)

k-1
oy d" | 4 hrt k+1

= —ap; g — +O(h 7

Ty O'Sa: Ot ] dyn [wly(wY)] n' ( ) (7)

Y=Vs
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® Consider the Taylor expansion of Eq. (6)

e Then, the first-order expansion is

x; = %w + ol (x;) + O(h) 1)
S
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® Drop high-order error terms
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Ty = G—a:s + thxus(ws) (7)
S

10/19



® Consider the Taylor expansion of Eq. (6)
® Then, the first-order expansion is

® Drop high-order error terms

Ot At as 2]
Ty ¥ —Ts + 0 ( = )wl|s(ws) (7)
Os Ot Os

10/19



® Consider the Taylor expansion of Eq. (6)
® Then, the first-order expansion is

® Drop high-order error terms

Ot Ot
2~ — x5 + | — as— |af| (x;) (7
O O

10/19



Consider the Taylor expansion of Eq. (6)
Then, the first-order expansion is

Drop high-order error terms

In the limit as t > 1, a4 —» 1, o, =0

0
Ty ~ ‘B1|S(ms)

(7)
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Consider the Taylor expansion of Eq. (6)
Then, the first-order expansion is

Drop high-order error terms

In the limit as t > 1, a4 —» 1, o, =0

Ty ~ :B%S(ws) (7)

Hence, the greedy gradient VmL(mgw(wt», can be viewed as a DTO scheme with a
large explicit Euler step.
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® Now consider an OTD scheme
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® Now consider an OTD scheme

® Continuous adjoint equations have a form of
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® Now consider an OTD scheme

® Continuous adjoint equations have a form of

e ox (wy)
agz(s) = ?aw(t) + o-t/ aw(y)Tla‘+ dy (8)
S Ys Y

e Then 1in the limit as t — 1 the first iteration of a fixed-point iteration

scheme yields

ox? (z5)
— =V L(af () (9)
ox

S}

az(s) ~ ag (1)’
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Proposition 2 (Dynamics of greedy gradient guidance). Consider the standard
affine Gaussian probability paths model trained to zero loss. The Gateaux
differential of x at some time t € [0,1] in the direction of the gradient

V. L (m?lt(a})) is given by

83®) ) (x) = ~V4 @), (@) Ve, (2) Vo, L(1). (10)

Theorem 3 (Dynamics of gradient vs greedy guidance). The difference between
the dynamics of gradient guidance and greedy gradient guidance in Proposi-
tion 2 for a point & at time t with guidance function £ € C'(RY) is bounded
by O(h?) where hi=y1 —y;, i.e.,

mebgl(w) - mei)lt(m)” =0(h?). (11)
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Theorem 4 (Greedy convergence). For affine probability paths, if there ex-
ists a sequence of states a:gn) at time t such that it converges to the lo-

cally optimal solution a’?u(w;n)) — x]. Then the solution, fbflt(wgn)), con-

verges to a neighborhood of size O(h?) centered at T c
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If greedy is Euler...
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If greedy 1is Euler...
What if we went beyond Euler?
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Theorem 5 (Truncation error of single-step gradients). Let ® be an explict

Runge-Kutta solver of order &« > 0 of a flow model with flow ¢zt(m). Then for
any t € [0,1],

Va0 (2) = Va1 (2)]| = O, (12)
where h=1-t.
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Corollary 5.1 (Convergence of a a-th order posterior gradient). For affine
probability paths, if there exists a sequence of states :ct" at time ¢ such that 1t

converges to the locally optimal solution & 1(:Btn)) — £L'1 Then solution,

1|t(:1:t ), converges to a neighborhood of size O(h%*!) centered at x].
Corollary 5.2 (Dynamics of a-th order posterior gradient). Consider the standard
affine Gaussian probability paths model trained to zero loss. Let ® be an explicit
Runga-Kutta solver of order @ > (0 of a flow model with flow @Y t(:c) The Gateaux

differential of ® at some time t € [0,1] in the direction of the gradient
A\ (<I>t,1(m)) is given by

53 () = Vol | (2)Ve @1 (x) Vo, L(21). (13)
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Figure 1: Qualitative visualization of using greedy guidance to solve the HDR 1inverse

problem. Top row 1is the ground truth, middle row is the measurement, and the bottom row is
the reconstruction.
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Table 1: Further ablations
inverse problem.

on the number of discretization steps on the non-linear HDR

Method PSNR (T) SSIM (1) LPIPS (]) FID (|)
DAPS 27124353 0.752.0.041 0.162.40 072 42.97
DPS 22.73.6.07 0.59110.141 0.264+0 156 112.82
RED-diff 22164341 0.51240.083 0.258.0.089 108.32
Greedy (Euler) 25.0744205 0.77640126 0.17310.070 43.25
Greedy (2-step Euler) 26.32:434 0.802:0111  0.17310.065 38.64
Greedy (3-step Euler) 27174491 0.8204+0.096 0.154.0.062 36.07
Greedy (4-step Euler) 27.89:410 0.828.0.092 0.151.0.061 36.94
Greedy (5-step Euler) 28.274:401  0.831:0088 0.149.0.059 35.35
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Summary
® End-to-end guidance and posterior guidance are two sides of the same coin
e Greedy guidance is reasonable up to O(h?)
e This can be improved with high-order solvers O(h®*!) or multiple steps O(h/n)
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