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• Consider @(X1) which models real-world data

• Consider some tractable

• Consider the flow Φ ∈ C1,A (ℝ×ℝ3 ;ℝ3 ) which satisfies

d
dC ΦC,1 (x) = uC (ΦC,1 (x)) (1)

• We want to find a flow (or vector field) such that

ΦC,1 (X0) ∼ @(X1) (2)

• Then we aim to find \ such that

u\
C (x) ≈ uC (x) (3)
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• Consider an Euler scheme with steps {C=}#==0 and step size ℎ

• Now take Euler steps…

x0 x1 x= x=+1… x#…
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Definition 1 (Problem statement). Given some C1 ∈ [0, 1) and step size regime
{C1 < C2 < . . . < C# = 1} solve:

Find a sequence {x=}#==1 which minimizes L(x# ),
subject to x=+1 = �(C=+1, C=,x=).

(4)
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Gradient descent?
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Need ∇{x,\ }!
(
i\

1 (x)
)
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Discretize-then-optimize (DTO)

• Simplest approach, just backprop through the solver

• Pros: Accuracy of gradients, fast, and easy to implement.

• Cons: Memory intensive O(=), optimization w.r.t. discretization and not
continuous ideal
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• Simplest approach, just backprop through the solver

• Pros: Accuracy of gradients, fast, and easy to implement.

• Cons: Memory intensive O(=), optimization w.r.t. discretization and not
continuous ideal

Optimize-then-discretize (OTD)

• I.e., the adjoint method, numerically solve another ODE

• Pros: Memory efficiency O(1), flexibility

• Cons: Computational cost, truncation errors
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• Recall the target prediction formula

x1 |C (x) = �[X1 |XC = x] (4)

• Use this estimate of the posterior to perform guidance,

∇x!(x1 |C (x)) (5)
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We view posterior guidance as a greedy strategy of end-to-end guidance
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Training-free
guided generation

Posterior sampling

UGD (Bansal et al. 2023)

DPS (Chung et al. 2023)

FreeDoM (Yu et al. 2023)

End-to-end
optimization

State optimization

AdjointDPM (Pan et al. 2024)

AdjointDEIS (Blasingame and C. Liu 2024)

D-Flow (Ben-Hamu et al. 2024)

Implicit diffusion (Marion et al. 2025)

Control signal
optimization FlowGrad (X. Liu et al. 2023)

OC-Flow (Wang et al. 2025)

A greedy strategy
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End-to-end guidance

State optimization Control signal optimization

Posterior guidance
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Proposition 1 (Exact solution of affine probability paths). Given an initial
value of xB at time B ∈ [0, 1] the solution xC at time C ∈ [0, 1] of an affine
probability path is:

xC =
fC

fB
xB + fC

∫ WC

WB

x\
1 |W (xW ) dW, (6)

where WC = UC/fC.
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• Consider the Taylor expansion of Eq. (6)

• Then, the first-order expansion is

• Drop high-order error terms

• In the limit as C → 1, UC → 1, fC → 0

xC =
fC

fB
xB + fC

:−1∑
==0

d=

dW=

[
x\

1 |W (xW )
]
W=WB

ℎ=+1

=! + O(ℎ:+1) (7)

• Hence, the greedy gradient ∇x!(x\
1 |C (xC )), can be viewed as a DTO scheme with a

large explicit Euler step.
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• Now consider an OTD scheme

• Continuous adjoint equations have a form of

ax (B) =
fC

fB
ax (C) + fC

∫ WC

WB

ax(W)>
mx\

1 |W (xW )
mxW

dW (8)

• Then in the limit as C → 1 the first iteration of a fixed-point iteration
scheme yields

ax (B) ≈ ax (1)>
mx\

1 |C (xB )
mxB

= ∇x!(x\
1 |B (xB )) (9)
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Proposition 2 (Dynamics of greedy gradient guidance). Consider the standard
affine Gaussian probability paths model trained to zero loss. The Gateaux
differential of x at some time C ∈ [0, 1] in the direction of the gradient

∇xL
(
x\

1 |C (x)
)
is given by

XG
xΦ

\
C,1 (x) = −∇xΦ

\
C,1 (x)∇xx

\
1 |C (x)

>∇x1L(x1). (10)

Theorem 3 (Dynamics of gradient vs greedy guidance). The difference between
the dynamics of gradient guidance and greedy gradient guidance in Proposi-
tion 2 for a point x at time C with guidance function L ∈ C1 (ℝ3 ) is bounded
by O(ℎ2) where ℎ ≔ W1 − WC, i.e.,


∇xΦ

\
C,1 (x) − ∇xx

\
1 |C (x)




 = O(ℎ2). (11)
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Theorem 4 (Greedy convergence). For affine probability paths, if there ex-
ists a sequence of states x(=)

C at time C such that it converges to the lo-

cally optimal solution x\
1 |C (x

(=)
C ) → x∗

1. Then the solution, Φ\
1 |C (x

(=)
C ), con-

verges to a neighborhood of size O(ℎ2) centered at x∗
1.

13/19



If greedy is Euler...
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If greedy is Euler...
What if we went beyond Euler?
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Theorem 5 (Truncation error of single-step gradients). Let � be an explict
Runge-Kutta solver of order U > 0 of a flow model with flow Φ\

B,C (x). Then for
any C ∈ [0, 1], 


∇xΦ

\
C,1 (x) − ∇x�C,1 (x)




 = O(ℎU+1), (12)

where ℎ = 1 − C.
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Corollary 5.1 (Convergence of a U-th order posterior gradient). For affine
probability paths, if there exists a sequence of states x(=)

C at time C such that it

converges to the locally optimal solution �
\
C,1 (x

(=)
C ) → x∗

1. Then solution,

Φ\
1 |C (x

(=)
C ), converges to a neighborhood of size O(ℎU+1) centered at x∗

1.

Corollary 5.2 (Dynamics of U-th order posterior gradient). Consider the standard
affine Gaussian probability paths model trained to zero loss. Let � be an explicit
Runga-Kutta solver of order U > 0 of a flow model with flow Φ\

B,C (x). The Gateaux
differential of x at some time C ∈ [0, 1] in the direction of the gradient
∇xL

(
�C,1 (x)

)
is given by

X�x (x) = −∇xΦ
\
C,1 (x)∇x�C,1 (x)>∇x1L(x1). (13)

16/19



Figure 1: Qualitative visualization of using greedy guidance to solve the HDR inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is
the reconstruction.
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Table 1: Further ablations on the number of discretization steps on the non-linear HDR
inverse problem.

Method PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)
DAPS 27.12±3.53 0.752±0.041 0.162±0.072 42.97
DPS 22.73±6.07 0.591±0.141 0.264±0.156 112.82
RED-diff 22.16±3.41 0.512±0.083 0.258±0.089 108.32
Greedy (Euler) 25.07±4.25 0.776±0.126 0.173±0.070 43.25
Greedy (2-step Euler) 26.32±4.34 0.802±0.111 0.173±0.065 38.64
Greedy (3-step Euler) 27.17±4.21 0.820±0.096 0.154±0.062 36.07
Greedy (4-step Euler) 27.89±4.10 0.828±0.092 0.151±0.061 36.94
Greedy (5-step Euler) 28.27±4.01 0.831±0.088 0.149±0.059 35.35
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Summary
• End-to-end guidance and posterior guidance are two sides of the same coin

• Greedy guidance is reasonable up to O(ℎ2)
• This can be improved with high-order solvers O(ℎU+1) or multiple steps O(ℎ/=)
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