
AdjointDEIS: Efficient Gradients for Diffusion Models
On the use of the continuous adjoint equations with diffusion models

Zander W. Blasingame

Clarkson University
Potsdam, NY, USA

2025.01.15



Outline

Introduction

AdjointDEIS

Remarks about using the continuous adjoint equations with diffusion models

1 / 38



Introduction



Diffusion models

• Forward diffusion process is governed by the Itô SDE

dxt = f(t)xt dt+ g(t) dwt, (1)

where {wt}t∈[0,T ] is the standard Wiener process on [0, T ].

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

2 / 38

https://openreview.net/forum?id=PxTIG12RRHS


Diffusion models

• The diffusion equation can be reversed with

dxt = [f(t)xt − g2(t)∇x log pt(xt)] dt+ g(t) dw̄t, (2)

where w̄t is the reverse Wiener process and ‘dt’ is a negative timestep.

• The marginal distributions pt(x) follow the probability flow ODE1

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log pt(xt). (3)

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

2 / 38

https://openreview.net/forum?id=PxTIG12RRHS


Diffusion models

• Often the Variance Preserving (VP) framework is used where the drift and diffusion
coefficients are

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t , (4)

for some noise schedule αt, σt

• Sampling the forward trajectory then simplifies to

xt = αtx0 + σtϵt ϵt ∼ N (0, I) (5)

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

2 / 38

https://openreview.net/forum?id=PxTIG12RRHS


Diffusion models

• Train the model via score-matching to learn ∇x log pt(xt).

• This is similar to learning the noise ϵ, i.e.,

ϵθ(xt, t) ≈ −σt∇x log pt(xt). (6)

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

2 / 38

https://openreview.net/forum?id=PxTIG12RRHS


Problem statement

• Solve the following optimization problem:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t) dt

)
. (7)

• Or in the SDE case:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

σt
ϵθ(xt, z, t) dt+

∫ 0

T

g(t) dw̄t

)
. (8)

• To backpropagate through an ODE/SDE solve we solve the continuous adjoint equations.

3 / 38



Continuous adjoint equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t). (9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [7,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)

4 / 38



Continuous adjoint equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t). (9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [7,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)

4 / 38



Continuous adjoint equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t).︸ ︷︷ ︸

Black box model fθ(xt, z, t) loses known information of f(t) and g(t).

(9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [7,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)

4 / 38



AdjointDEIS



The continuous adjoint equations are also semi-linear

• Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

dax
dt

(t) = −f(t)ax(t)︸ ︷︷ ︸
Linear

− g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (11)

• Then, the exact solution at time s given time t < s is found to be

ax(s) = e
∫ t
s
f(τ) dτax(t)︸ ︷︷ ︸

linear

−
∫ s

t

e
∫ u
s

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du︸ ︷︷ ︸

non-linear

. (12)

• Use the log-SNR trick2 to further simplify the exact solution with λt := log(αt/σt).

2Cheng Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 5775–5787. url:
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.

5 / 38

https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf


The continuous adjoint equations are also semi-linear

• Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

dax
dt

(t) = −f(t)ax(t)−
g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (11)

• Then, the exact solution at time s given time t < s is found to be

ax(s) = e
∫ t
s
f(τ) dτax(t)︸ ︷︷ ︸

linear

−
∫ s

t

e
∫ u
s

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du︸ ︷︷ ︸

non-linear

. (12)

• Use the log-SNR trick2 to further simplify the exact solution with λt := log(αt/σt).

2Cheng Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 5775–5787. url:
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.

5 / 38

https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf


The continuous adjoint equations are also semi-linear

• Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

dax
dt

(t) = −f(t)ax(t)−
g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (11)

• Then, the exact solution at time s given time t < s is found to be

ax(s) = e
∫ t
s
f(τ) dτax(t)︸ ︷︷ ︸

linear

−
∫ s

t

e
∫ u
s

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du︸ ︷︷ ︸

non-linear

. (12)

• Use the log-SNR trick2 to further simplify the exact solution with λt := log(αt/σt).

2Cheng Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 5775–5787. url:
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.

5 / 38

https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf


Simplified exact solutions

Proposition 1 (Exact solution of adjoint diffusion ODEs3)

Given initial values [ax(t),az(t),aθ(t)] at time t ∈ (0, T ), the solution [ax(s),az(s),aθ(s)] at
time s ∈ (t, T ] of adjoint diffusion ODEs in Eq. (10) is

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ∂ϵθ(xλ, z, λ)

∂xλ
dλ, (13)

az(s) = az(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z
dλ, (14)

aθ(s) = aθ(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂θ
dλ. (15)

3Zander W. Blasingame and Chen Liu. “AdjointDEIS: Efficient Gradients for Diffusion Models”. In: The Thirty-eighth Annual Conference on Neural Information Processing
Systems. 2024. url: https://openreview.net/forum?id=fAlcxvrOEX.

6 / 38

https://openreview.net/forum?id=fAlcxvrOEX


Designing bespoke ODE solvers

• We denote the n-th derivative of the scaled vector-Jacobian product by

V(n)(x;λt) =
dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

. (16)

• Use Taylor Expansion on Eq. (13) to obtain and letting h = λs − λt yields

ax(s) =
αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+
1

αs

k−1∑
n=0

V(n)(x;λt)

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ+O(hk+1). (17)

7 / 38



Designing bespoke ODE solvers

• We denote the n-th derivative of the scaled vector-Jacobian product by

V(n)(x;λt) =
dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

. (16)

• Use Taylor Expansion on Eq. (13) to obtain and letting h = λs − λt yields

ax(s) =
αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+
1

αs

k−1∑
n=0

V(n)(x;λt)︸ ︷︷ ︸
Derivatives

Approximated

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ+O(hk+1). (17)

7 / 38



Designing bespoke ODE solvers

• We denote the n-th derivative of the scaled vector-Jacobian product by

V(n)(x;λt) =
dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

. (16)

• Use Taylor Expansion on Eq. (13) to obtain and letting h = λs − λt yields

ax(s) =
αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+
1

αs

k−1∑
n=0

V(n)(x;λt)︸ ︷︷ ︸
Derivatives

Approximated

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ︸ ︷︷ ︸

Coefficients
Analytically computed

+O(hk+1). (17)

7 / 38



Designing bespoke ODE solvers

• We denote the n-th derivative of the scaled vector-Jacobian product by

V(n)(x;λt) =
dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

. (16)

• Use Taylor Expansion on Eq. (13) to obtain and letting h = λs − λt yields

ax(s) =
αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+
1

αs

k−1∑
n=0

V(n)(x;λt)︸ ︷︷ ︸
Derivatives

Approximated

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ︸ ︷︷ ︸

Coefficients
Analytically computed

+ O(hk+1)︸ ︷︷ ︸
Higher-order errors

Omitted

.

(17)

• And analogously for az(t) and aθ(t).

7 / 38



AdjointDEIS

Theorem 1 (AdjointDEIS-k as a k-th order solver)

Assume the function ϵθ(xt, z, t) and its associated vector-Jacobian products follow the
regularity conditions detailed in Appendix B of the main paper, then for k = 1, 2,
AdjointDEIS-k is a k-th order solver for adjoint diffusion ODEs, i.e., for the sequence
{ãx(ti)}Mi=1 computed by AdjointDEIS-k, the global truncation error at time T satisfies
ãx(tM )− ax(T ) = O(h2

max), where hmax = max1≤j≤M (λti − λti−1
). Likewise, AdjointDEIS-k

is a k-th order solver for the estimated gradients w.r.t. z and θ.

8 / 38



Certain adjoint SDEs are actually ODEs

Theorem 2

Let f : Rd × R → Rd be in C∞,1
b and g : R → Rd×w be in C1

b . Let L : Rd → R be a
scalar-valued differentiable function. Let wt : [0, T ] → Rw be a w-dimensional Wiener process.
Let x : [0, T ] → Rd solve the Stratonovich SDE

dxt = f(xt, t) dt+ g(t) ◦ dwt,

with initial condition x0. Then the adjoint process ax(t) := ∂L(xT )/∂xt is a strong solution to
the backwards-in-time ODE

dax(t) = −ax(t)
⊤ ∂f

∂xt
(xt, t) dt. (18)

9 / 38



ODE solvers for the adjoint diffusion SDE

• Probability Flow ODEs are related to diffusion SDEs by the manipulations of the
Kolmogorov equations4.

• The drift term is identical to the vector field of the ODE, sans a factor of two:

dxt = f(t)xt + 2
g2(t)

2σt
ϵθ(xt, z, t) dt︸ ︷︷ ︸

Probabilty Flow ODE

+ g(t) dw̄t. (19)

• By Theorem 2 the adjoint SDE evolves with an ODE with vector field
−ax(t)

⊤∂fθ(xt, z, t)/∂xt.

• Therefore, we can use the same bespoke ODE solvers for adjoint diffusion ODEs with the
added factor of 2!

4Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

10 / 38

https://openreview.net/forum?id=PxTIG12RRHS


ODE solvers for the adjoint diffusion SDE

• Probability Flow ODEs are related to diffusion SDEs by the manipulations of the
Kolmogorov equations4.

• The drift term is identical to the vector field of the ODE, sans a factor of two:

dxt = f(t)xt +
g2(t)

σt
ϵθ(xt, z, t)︸ ︷︷ ︸

=fθ(xt,z,t)

dt+ g(t) dw̄t. (19)

• By Theorem 2 the adjoint SDE evolves with an ODE with vector field
−ax(t)

⊤∂fθ(xt, z, t)/∂xt.

• Therefore, we can use the same bespoke ODE solvers for adjoint diffusion ODEs with the
added factor of 2!

4Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

10 / 38

https://openreview.net/forum?id=PxTIG12RRHS


ODE solvers for the adjoint diffusion SDE

• Probability Flow ODEs are related to diffusion SDEs by the manipulations of the
Kolmogorov equations4.

• The drift term is identical to the vector field of the ODE, sans a factor of two:

dxt = f(t)xt +
g2(t)

σt
ϵθ(xt, z, t)︸ ︷︷ ︸

=fθ(xt,z,t)

dt+ g(t) dw̄t. (19)

• By Theorem 2 the adjoint SDE evolves with an ODE with vector field
−ax(t)

⊤∂fθ(xt, z, t)/∂xt.

• Therefore, we can use the same bespoke ODE solvers for adjoint diffusion ODEs with the
added factor of 2!

4Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

10 / 38

https://openreview.net/forum?id=PxTIG12RRHS


Experiment - face morphing

(a) Identity a (b) Face morphing with AdjointDEIS (c) Identity b

Figure 1: Create a morphed face which causes a Face Recognition (FR) system to accept it with both
identities.

11 / 38



Experiment - face morphing

• Goal is to adversarially attack an FR system by finding the xT , z which creates the
optimal morph.

• Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.

• Using AdjointDEIS massively improves the performance of Diffusion Morphs (DiM).

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR [17](↑)

Morphing Attack NFE(↓) AdaFace [10] ArcFace [5] ElasticFace [4]

Webmorph [6] - 97.96 96.93 98.36
MIPGAN-I [19] - 72.19 77.51 66.46
MIPGAN-II [19] - 70.55 72.19 65.24
DiM-A [3] 350 92.23 90.18 93.05
Fast-DiM [2] 300 92.02 90.18 93.05
Morph-PIPE [20] 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

12 / 38



Continuous adjoint equations for scheduled conditional information

• Currently, we consider constant conditional information z.

• What if the conditioning signal changed with the timestep, i.e., zt?

• Question is then how do we find ∂L/∂zt := az(t)?

• Fortunately, it reduces to a simple integral.

13 / 38



Continuous adjoint equations for scheduled conditional information

• Currently, we consider constant conditional information z.

• What if the conditioning signal changed with the timestep, i.e., zt?

• Question is then how do we find ∂L/∂zt := az(t)?

• Fortunately, it reduces to a simple integral.

13 / 38



Continuous adjoint equations for scheduled conditional information

• Currently, we consider constant conditional information z.

• What if the conditioning signal changed with the timestep, i.e., zt?

• Question is then how do we find ∂L/∂zt := az(t)?

• Fortunately, it reduces to a simple integral.

13 / 38



Continuous adjoint equations for scheduled conditional information

• Currently, we consider constant conditional information z.

• What if the conditioning signal changed with the timestep, i.e., zt?

• Question is then how do we find ∂L/∂zt := az(t)?

• Fortunately, it reduces to a simple integral.

13 / 38



Gradients of scheduled conditional information

Theorem 3

Suppose there exists a function z : [0, T ] → Rz which can be defined as a càdlàg piecewise
function where z is continuous on each partition of [0, T ] given by
Π = {0 = t0 < t1 < · · · < tn = T} and whose right derivatives exist for all t ∈ [0, T ]. Let
fθ : Rd × Rz × R → Rd be continuous in t, uniformly Lipschitz in x, and continuously
differentiable in x. Let x : R → Rd be the unique solution for the ODE

dxt

dt
= fθ(xt, zt, t),

with initial condition x0. Let L : Rd → R be a scalar-valued loss function defined on the
output of the neural ODE. Then ∂L/∂zt := az(t) and there exists a unique solution
az : R → Rz to the following IVP:

az(T ) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, zt, t)

∂zt
.

14 / 38



Gradients of the conditional information are still a mere integral

• As the vector fields of the ODE are independent of az we have a mere integral,

az(t) = −
∫ t

T

ax(τ)
⊤ ∂fθ(xτ , zτ , τ)

∂zτ
dτ. (20)

• We can simply replace our z with zt when performing guided generation.

• Enables us to update time-dependent conditioning signal.

• We have the flexibility to only update back to a certain t ∈ [0, T ).

15 / 38



Gradients of the conditional information are still a mere integral

• As the vector fields of the ODE are independent of az we have a mere integral,

az(t) = −
∫ t

T

ax(τ)
⊤ ∂fθ(xτ , zτ , τ)

∂zτ
dτ. (20)

• We can simply replace our z with zt when performing guided generation.

• Enables us to update time-dependent conditioning signal.

• We have the flexibility to only update back to a certain t ∈ [0, T ).

15 / 38



Gradients of the conditional information are still a mere integral

• As the vector fields of the ODE are independent of az we have a mere integral,

az(t) = −
∫ t

T

ax(τ)
⊤ ∂fθ(xτ , zτ , τ)

∂zτ
dτ. (20)

• We can simply replace our z with zt when performing guided generation.

• Enables us to update time-dependent conditioning signal.

• We have the flexibility to only update back to a certain t ∈ [0, T ).

15 / 38



What about neural CDEs?

• Kidger [9, Theorem C.1] showed that any equation of the form

xt = x0 +

∫ t

0

hθ(xs, zs, s) ds, (21)

can be rewritten as a neural controlled differential equation (CDE) of the form

xt = x0 +

∫ t

0

fθ(xs, s) dzs, (22)

where
∫

dzs is the Riemann-Stieltjes integral.

• Note, the converse is not true.

• Neural CDEs used zt as an additional control signal, but were not interested in updating
zt.

16 / 38



What about neural CDEs?

• Kidger [9, Theorem C.1] showed that any equation of the form

xt = x0 +

∫ t

0

hθ(xs, zs, s) ds, (21)

can be rewritten as a neural controlled differential equation (CDE) of the form

xt = x0 +

∫ t

0

fθ(xs, s) dzs, (22)

where
∫

dzs is the Riemann-Stieltjes integral.

• Note, the converse is not true.

• Neural CDEs used zt as an additional control signal, but were not interested in updating
zt.

16 / 38



What about neural CDEs?

• Kidger [9, Theorem C.1] showed that any equation of the form

xt = x0 +

∫ t

0

hθ(xs, zs, s) ds, (21)

can be rewritten as a neural controlled differential equation (CDE) of the form

xt = x0 +

∫ t

0

fθ(xs, s) dzs, (22)

where
∫

dzs is the Riemann-Stieltjes integral.

• Note, the converse is not true.

• Neural CDEs used zt as an additional control signal, but were not interested in updating
zt.

16 / 38



Time scheduled conditional information in practice

• Suppose we have a fully observed, but irregularly sampled time series {zti}Ni=1 with
0 = t0 < · · · < tn = T .

• Define Z : [0, T ] → Rz as the natural cubic spline with knots at t0, . . . , tn such that
Z(ti) = zti .

• Can use this with adaptive step size solvers for ax(t).

17 / 38



Remarks about using the continuous adjoint
equations with diffusion models



Approaches for guided generation

• We will broadly categorize approaches into two categories:

◦ Solution Optimization - Only cares about finding the optimal output, x0,
◦ End-to-End Optimization - Cares about finding the optimal entire solution trajectory and

associated variables, ({xti}ni=1, z, θ).

• For this later category we need to backpropogate through an ODE/SDE solve of the
diffusion model

18 / 38



Approaches for guided generation

• We will broadly categorize approaches into two categories:

◦ Solution Optimization - Only cares about finding the optimal output, x0,
◦ End-to-End Optimization - Cares about finding the optimal entire solution trajectory and

associated variables, ({xti}ni=1, z, θ). Focus on this category.

• For this later category we need to backpropogate through an ODE/SDE solve of the
diffusion model

18 / 38



Approaches for guided generation

• We will broadly categorize approaches into two categories:

◦ Solution Optimization - Only cares about finding the optimal output, x0,
◦ End-to-End Optimization - Cares about finding the optimal entire solution trajectory and

associated variables, ({xti}ni=1, z, θ).

• For this later category we need to backpropogate through an ODE/SDE solve of the
diffusion model

18 / 38



Backpropagation through neural differential equations

• Discretize-then-optimize (DTO)

◦ Simplest approach, just backprop through the solver.
◦ Pros: Accuracy of gradients, fast, and easy to implement.
◦ Cons: Memory intensive, optimization w.r.t. discretization and not continuous ideal.

• Optimize-then-discretize (OTD)

◦ The adjoint method, numerically solve adjoint equations for gradients.
◦ Pros: Memory efficiency, flexibility.
◦ Cons: Computational cost, truncation errors.

• Reversible solvers

◦ Possible best of both worlds.
◦ Pros: Memory efficient and accurate gradients.
◦ Cons: Low-order and poor stability (recent work has started to address this).

• For more details we refer to Patrick Kidger’s monograph on neural differential equations5.

5Patrick Kidger. “On Neural Differential Equations”. PhD thesis. Oxford University, 2022.

19 / 38



Backpropagation through neural differential equations

• Discretize-then-optimize (DTO)

◦ Simplest approach, just backprop through the solver.
◦ Pros: Accuracy of gradients, fast, and easy to implement.
◦ Cons: Memory intensive, optimization w.r.t. discretization and not continuous ideal.

• Optimize-then-discretize (OTD)

◦ The adjoint method, numerically solve adjoint equations for gradients.
◦ Pros: Memory efficiency, flexibility.
◦ Cons: Computational cost, truncation errors.

• Reversible solvers

◦ Possible best of both worlds.
◦ Pros: Memory efficient and accurate gradients.
◦ Cons: Low-order and poor stability (recent work has started to address this).

• For more details we refer to Patrick Kidger’s monograph on neural differential equations5.

5Patrick Kidger. “On Neural Differential Equations”. PhD thesis. Oxford University, 2022.

19 / 38



Backpropagation through neural differential equations

• Discretize-then-optimize (DTO)

◦ Simplest approach, just backprop through the solver.
◦ Pros: Accuracy of gradients, fast, and easy to implement.
◦ Cons: Memory intensive, optimization w.r.t. discretization and not continuous ideal.

• Optimize-then-discretize (OTD)

◦ The adjoint method, numerically solve adjoint equations for gradients.
◦ Pros: Memory efficiency, flexibility.
◦ Cons: Computational cost, truncation errors.

• Reversible solvers

◦ Possible best of both worlds.
◦ Pros: Memory efficient and accurate gradients.
◦ Cons: Low-order and poor stability (recent work has started to address this).

• For more details we refer to Patrick Kidger’s monograph on neural differential equations5.

5Patrick Kidger. “On Neural Differential Equations”. PhD thesis. Oxford University, 2022.

19 / 38



Techniques for OTD optimization of diffusion models

Table 2: Overview of different OTD methods for diffusion models.

Method ODE SDE Key Idea

DiffPure [15] ✗ ✓ First to consider OTD for diffusion models
AdjointDPM [16] ✓ ✗ Exponential integrators with OTD
Implicit Diffusion [12] ✓ ✓ Time parallelization of OTD
AdjointDEIS [1] ✓ ✓ Bespoke solvers for ODE/SDE

20 / 38



The flexibility of OTD

• Beyond memory efficiency OTD provides a very flexible framework.

• We can have a different number of discretization steps for the forward and backward solve
(more relevant for models with a large number of sampling steps).

• Area of future research, can we get away with less “accurate” gradients in practice?

• Different solvers for the underlying state {xt} and gradients {ax(t)}.

21 / 38



The flexibility of OTD

• Beyond memory efficiency OTD provides a very flexible framework.

• We can have a different number of discretization steps for the forward and backward solve
(more relevant for models with a large number of sampling steps).

• Area of future research, can we get away with less “accurate” gradients in practice?

• Different solvers for the underlying state {xt} and gradients {ax(t)}.

21 / 38



The flexibility of OTD

• Beyond memory efficiency OTD provides a very flexible framework.

• We can have a different number of discretization steps for the forward and backward solve
(more relevant for models with a large number of sampling steps).

• Area of future research, can we get away with less “accurate” gradients in practice?

• Different solvers for the underlying state {xt} and gradients {ax(t)}.

21 / 38



The flexibility of OTD

• Beyond memory efficiency OTD provides a very flexible framework.

• We can have a different number of discretization steps for the forward and backward solve
(more relevant for models with a large number of sampling steps).

• Area of future research, can we get away with less “accurate” gradients in practice?

• Different solvers for the underlying state {xt} and gradients {ax(t)}.

21 / 38



Truncation errors

• Potentially inaccurate gradients due to different estimates of {xt} in the forward and
backwards solve.

• Consider a first-order solver (DDIM, DPM-Solver-1) then given

x̂0 =
α0

αt
xt − σ0(e

h − 1)ϵθ(xt, t), h = λ0 − λt, (23)

x̂t =
αt

α0
x̂0 − σt(e

−h − 1)ϵθ(x̂0, 0), (24)

it is not necessary that for all t ∈ [0, T ] and xt ∈ Rd that

x̂t = xt, (25)

holds.

• This can be mitigated with small step sizes at the cost of increased compute.

22 / 38



Truncation errors

• Potentially inaccurate gradients due to different estimates of {xt} in the forward and
backwards solve.

• Consider a first-order solver (DDIM, DPM-Solver-1) then given

x̂0 =
α0

αt
xt − σ0(e

h − 1)ϵθ(xt, t), h = λ0 − λt, (23)

x̂t =
αt

α0
x̂0 − σt(e

−h − 1)ϵθ(x̂0, 0), (24)

it is not necessary that for all t ∈ [0, T ] and xt ∈ Rd that

x̂t = xt, (25)

holds.

• This can be mitigated with small step sizes at the cost of increased compute.

22 / 38



Truncation errors

• Potentially inaccurate gradients due to different estimates of {xt} in the forward and
backwards solve.

• Consider a first-order solver (DDIM, DPM-Solver-1) then given

x̂0 =
α0

αt
xt − σ0(e

h − 1)ϵθ(xt, t), h = λ0 − λt, (23)

x̂t =
αt

α0
x̂0 − σt(e

−h − 1)ϵθ(x̂0, 0), (24)

it is not necessary that for all t ∈ [0, T ] and xt ∈ Rd that

x̂t = xt, (25)

holds.

• This can be mitigated with small step sizes at the cost of increased compute.

22 / 38



Stability of OTD

• Consider a simple ODE on t ∈ [0, T ] given by

dy

dt
(t) = λy(t), y(0) = y0, λ < 0. (26)

• Most ODE solvers with a non-trivial region of stability will solve the ODE without issue.

• As λ < 0, the errors decay exponentially.

• , for backwards in time solve from y(T ) the errors will exponentially.

• The adjoint ODE has the same stability properties as y.

23 / 38



Stability of OTD

• Consider a simple ODE on t ∈ [0, T ] given by

dy

dt
(t) = λy(t), y(0) = y0, λ < 0. (26)

• Most ODE solvers with a non-trivial region of stability will solve the ODE without issue.

• As λ < 0, the errors decay exponentially.

• , for backwards in time solve from y(T ) the errors will exponentially.

• The adjoint ODE has the same stability properties as y.

23 / 38



Stability of OTD

• Consider a simple ODE on t ∈ [0, T ] given by

dy

dt
(t) = λy(t), y(0) = y0, λ < 0. (26)

• Most ODE solvers with a non-trivial region of stability will solve the ODE without issue.

• As λ < 0, the errors decay exponentially.

• However, for backwards in time solve from y(T ) the errors will grow exponentially.

• The adjoint ODE has the same stability properties as y.

23 / 38



Stability of OTD

• Consider a simple ODE on t ∈ [0, T ] given by

dy

dt
(t) = λy(t), y(0) = y0, λ < 0. (26)

• Most ODE solvers with a non-trivial region of stability will solve the ODE without issue.

• As λ < 0, the errors decay exponentially.

• However, for backwards in time solve from y(T ) the errors will grow exponentially.

• The adjoint ODE has the same stability properties as y.

23 / 38



Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].

24 / 38



Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].

24 / 38



Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].

24 / 38



Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].

24 / 38



Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].

24 / 38



Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].

24 / 38



Asynchronous leapfrog method (ICLR 2021)

• Initially proposed by Mutze7 and popularized by Zhuang et al.8

• Is a second-order method.

Forward pass

With h := ti+1 − ti the forward pass is defined as

xti+
h
2
= xti +

1

2
vtih,

vti+1
= 2fθ(xti+

h
2
, ti + h/2)− vti ,

xti+1
= xti + fθ(xti+h/2, ti +

h

2
)h.

7Ulrich Mutze. “An asynchronous leapfrog method II”. In: arXiv preprint arXiv:1311.6602 (2013).

8Juntang Zhuang et al. “MALI: A memory efficient and reverse accurate integrator for Neural ODEs”. In: International Conference on Learning Representations (2021).

25 / 38



Asynchronous leapfrog method (ICLR 2021)

• Initially proposed by Mutze7 and popularized by Zhuang et al.8

• Is a second-order method.

Backward pass

With h := ti+1 − ti the backward pass is defined as

xti+
h
2
= xti+1 −

1

2
vti+1h,

vti = 2fθ(xti+
h
2
, ti + h/2)− vti+1

,

xti = xti+1
− fθ(xti+

h
2
, ti + h/2)h.

7Ulrich Mutze. “An asynchronous leapfrog method II”. In: arXiv preprint arXiv:1311.6602 (2013).

8Juntang Zhuang et al. “MALI: A memory efficient and reverse accurate integrator for Neural ODEs”. In: International Conference on Learning Representations (2021).

25 / 38



Reversible Heun (NeurIPS 2021)

• Proposed by Kidger et al.9

• Works for neural ODEs, CDEs, and SDEs.

• ODE solver is a second-order method and exhibits a strong convergence of order 1 if the
noise is additive.

Forward pass

With h := ti+1 − ti the forward pass is defined as

pxti+1 = 2xti − pxti + fθ(pxti , ti)h,

xti+1 = xti +
1

2

(
fθ(pxti+1 , ti+1),fθ(pxti , ti)

)
h.

9Patrick Kidger et al. “Efficient and Accurate Gradients for Neural SDEs”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran
Associates, Inc., 2021, pp. 18747–18761. url: https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf.

26 / 38

https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf


Reversible Heun (NeurIPS 2021)

• Proposed by Kidger et al.9

• Works for neural ODEs, CDEs, and SDEs.

• ODE solver is a second-order method and exhibits a strong convergence of order 1 if the
noise is additive.

Backward pass

With h := ti+1 − ti the backward pass is defined as

pxti = 2xti+1 − pxti+1 − fθ(pxti+1 , ti+1)h,

xti = xti+1 −
1

2

(
fθ(pxti+1 , ti+1),fθ(pxti , ti)

)
h.

Note, this method is also symmetric.

9Patrick Kidger et al. “Efficient and Accurate Gradients for Neural SDEs”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran
Associates, Inc., 2021, pp. 18747–18761. url: https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf.

26 / 38

https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf


Stability of the reversible solvers

• Consider the test equation ẏ = λy with y(0) = 1 defined on [0,∞) with λ ∈ C.

• The region of stability of a numerical solver is the values of λ which ensures the numerical
solver converges for a fixed step size.

• The region of stability for the asynchronous leapfrog method and reversible Heun are both
the complex interval [−i, i].

• Could be due to an unstable step of form 2A−B, instability is amplified when

◦ vti and fθ(xti , ti) drift apart (asynchronous leapfrog),
◦ xti and pxti drift apart (reversible Heun).

27 / 38



Stability of the reversible solvers

• Consider the test equation ẏ = λy with y(0) = 1 defined on [0,∞) with λ ∈ C.
• The region of stability of a numerical solver is the values of λ which ensures the numerical
solver converges for a fixed step size.

• The region of stability for the asynchronous leapfrog method and reversible Heun are both
the complex interval [−i, i].

• Could be due to an unstable step of form 2A−B, instability is amplified when

◦ vti and fθ(xti , ti) drift apart (asynchronous leapfrog),
◦ xti and pxti drift apart (reversible Heun).

27 / 38



Stability of the reversible solvers

• Consider the test equation ẏ = λy with y(0) = 1 defined on [0,∞) with λ ∈ C.
• The region of stability of a numerical solver is the values of λ which ensures the numerical
solver converges for a fixed step size.

• The region of stability for the asynchronous leapfrog method and reversible Heun are both
the complex interval [−i, i].

• Could be due to an unstable step of form 2A−B, instability is amplified when

◦ vti and fθ(xti , ti) drift apart (asynchronous leapfrog),
◦ xti and pxti drift apart (reversible Heun).

27 / 38



Stability of the reversible solvers

• Consider the test equation ẏ = λy with y(0) = 1 defined on [0,∞) with λ ∈ C.
• The region of stability of a numerical solver is the values of λ which ensures the numerical
solver converges for a fixed step size.

• The region of stability for the asynchronous leapfrog method and reversible Heun are both
the complex interval [−i, i].

• Could be due to an unstable step of form 2A−B, instability is amplified when

◦ vti and fθ(xti , ti) drift apart (asynchronous leapfrog),
◦ xti and pxti drift apart (reversible Heun).

27 / 38



McCallum-Foster method

• Recently, McCallum and Foster10 showed that it is possible to construct an algebraically
reversible solver from any explicit numerical ODE solver Φ : Rd × R → Rd.

• Suppose the explicit solver can be expressed as xti+1 = xti +Φh(xti , ti) with step size h.

• If Φ has k-th order convergence then reversible solver will also have k-th order
convergence.

10Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).

28 / 38



McCallum-Foster method

• Recently, McCallum and Foster10 showed that it is possible to construct an algebraically
reversible solver from any explicit numerical ODE solver Φ : Rd × R → Rd.

• Suppose the explicit solver can be expressed as xti+1 = xti +Φh(xti , ti) with step size h.

• If Φ has k-th order convergence then reversible solver will also have k-th order
convergence.

10Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).

28 / 38



McCallum-Foster method

• Recently, McCallum and Foster10 showed that it is possible to construct an algebraically
reversible solver from any explicit numerical ODE solver Φ : Rd × R → Rd.

• Suppose the explicit solver can be expressed as xti+1 = xti +Φh(xti , ti) with step size h.

• If Φ has k-th order convergence then reversible solver will also have k-th order
convergence.

Forward pass

With h := ti+1 − ti the forward pass is defined as

xti+1 = λxti + (1− λ)pxti +Φh(pxti , ti)

pxti+1 = pxti − Φ−h(xti+1 , ti+1),

where λ ∈ (0, 1] is a coupling parameter.

10Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).

28 / 38



McCallum-Foster method

• Recently, McCallum and Foster10 showed that it is possible to construct an algebraically
reversible solver from any explicit numerical ODE solver Φ : Rd × R → Rd.

• Suppose the explicit solver can be expressed as xti+1 = xti +Φh(xti , ti) with step size h.

• If Φ has k-th order convergence then reversible solver will also have k-th order
convergence.

Backward pass

With h := ti+1 − ti the backward pass is defined as

pxti = pxti+1 +Φ−h(xti+1 , ti+1),

xti = λ−1xti+1
+ (1− λ−1)pxti − λ−1Φh(pxti , ti).

10Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).

28 / 38



Non-trivial stability

Figure 2: Stability plots from McCallum and Foster [13].

29 / 38



Record the solution trajectory

• A simple fix for the numerical unstability of OTD is to simply cache {xti}ni=1 during the
forward pass.

• Note, we are not storing the internal operations of the solver and network.

• The stability is much improved using this method at the cost of increased memory usage.

• For diffusion models with a small number of sampling steps this may be acceptable,
however.

• A similar approach is that of interpolated adjoints.

• Record {xτj}mj=1 and {τj}mj=1 ⊆ {ti}ni=1.

• Then for any τj > t > τj+1 interpolate between the two samples xτj and xτj+1
to find xt.

30 / 38



Record the solution trajectory

• A simple fix for the numerical unstability of OTD is to simply cache {xti}ni=1 during the
forward pass.

• Note, we are not storing the internal operations of the solver and network.

• The stability is much improved using this method at the cost of increased memory usage.

• For diffusion models with a small number of sampling steps this may be acceptable,
however.

• A similar approach is that of interpolated adjoints.

• Record {xτj}mj=1 and {τj}mj=1 ⊆ {ti}ni=1.

• Then for any τj > t > τj+1 interpolate between the two samples xτj and xτj+1
to find xt.

30 / 38



Record the solution trajectory

• A simple fix for the numerical unstability of OTD is to simply cache {xti}ni=1 during the
forward pass.

• Note, we are not storing the internal operations of the solver and network.

• The stability is much improved using this method at the cost of increased memory usage.

• For diffusion models with a small number of sampling steps this may be acceptable,
however.

• A similar approach is that of interpolated adjoints.

• Record {xτj}mj=1 and {τj}mj=1 ⊆ {ti}ni=1.

• Then for any τj > t > τj+1 interpolate between the two samples xτj and xτj+1
to find xt.

30 / 38



Record the solution trajectory

• A simple fix for the numerical unstability of OTD is to simply cache {xti}ni=1 during the
forward pass.

• Note, we are not storing the internal operations of the solver and network.

• The stability is much improved using this method at the cost of increased memory usage.

• For diffusion models with a small number of sampling steps this may be acceptable,
however.

• A similar approach is that of interpolated adjoints.

• Record {xτj}mj=1 and {τj}mj=1 ⊆ {ti}ni=1.

• Then for any τj > t > τj+1 interpolate between the two samples xτj and xτj+1
to find xt.

30 / 38



Record the solution trajectory

• A simple fix for the numerical unstability of OTD is to simply cache {xti}ni=1 during the
forward pass.

• Note, we are not storing the internal operations of the solver and network.

• The stability is much improved using this method at the cost of increased memory usage.

• For diffusion models with a small number of sampling steps this may be acceptable,
however.

• A similar approach is that of interpolated adjoints.

• Record {xτj}mj=1 and {τj}mj=1 ⊆ {ti}ni=1.

• Then for any τj > t > τj+1 interpolate between the two samples xτj and xτj+1
to find xt.

30 / 38



Parallel sampling and optimization

Figure 3: Implicit Diffusion by Marion et al.11

• Fill up shift register with initial sample trajectory {xti}ni=1.

• Can now sample and backpropagate in parallel.

• Because it’s a shift register it still takes m steps to propagate an update to xT .

11Pierre Marion et al. “Implicit Diffusion: Efficient Optimization through Stochastic Sampling”. In: arXiv preprint arXiv:2402.05468 (2024).

31 / 38



Thoughts on when and how to use OTD for diffusion models

• Does DTO work? Most accurate in terms of model gradients.

• If not, can we record the solution states?

• If not, consider a reversible solver for the backward pass.

• Note, in practice OTD seems to work well enough and the gradient inaccuracy might not
be a big deal in certain applications.

32 / 38



Thoughts on when and how to use OTD for diffusion models

• Does DTO work? Most accurate in terms of model gradients.

• If not, can we record the solution states?

• If not, consider a reversible solver for the backward pass.

• Note, in practice OTD seems to work well enough and the gradient inaccuracy might not
be a big deal in certain applications.

32 / 38



Thoughts on when and how to use OTD for diffusion models

• Does DTO work? Most accurate in terms of model gradients.

• If not, can we record the solution states?

• If not, consider a reversible solver for the backward pass.

• Note, in practice OTD seems to work well enough and the gradient inaccuracy might not
be a big deal in certain applications.

32 / 38



Thoughts on when and how to use OTD for diffusion models

• Does DTO work? Most accurate in terms of model gradients.

• If not, can we record the solution states?

• If not, consider a reversible solver for the backward pass.

• Note, in practice OTD seems to work well enough and the gradient inaccuracy might not
be a big deal in certain applications.

32 / 38



?

33 / 38



References i

References

[1] Zander W. Blasingame and Chen Liu. “AdjointDEIS: Efficient Gradients for Diffusion
Models”. In: The Thirty-eighth Annual Conference on Neural Information Processing
Systems. 2024. url: https://openreview.net/forum?id=fAlcxvrOEX.

[2] Zander W. Blasingame and Chen Liu. “Fast-DiM: Towards Fast Diffusion Morphs”. In:
IEEE Security & Privacy 22.4 (June 2024), pp. 103–114. doi:
10.1109/MSEC.2024.3410112.

[3] Zander W. Blasingame and Chen Liu. “Leveraging Diffusion for Strong and High Quality
Face Morphing Attacks”. In: IEEE Transactions on Biometrics, Behavior, and Identity
Science 6.1 (2024), pp. 118–131. doi: 10.1109/TBIOM.2024.3349857.

34 / 38

https://openreview.net/forum?id=fAlcxvrOEX
https://doi.org/10.1109/MSEC.2024.3410112
https://doi.org/10.1109/TBIOM.2024.3349857


References ii

[4] Fadi Boutros et al. “ElasticFace: Elastic Margin Loss for Deep Face Recognition”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops. June 2022, pp. 1578–1587.

[5] Jiankang Deng et al. “Arcface: Additive angular margin loss for deep face recognition”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 4690–4699.

[6] Marco Huber et al. “SYN-MAD 2022: Competition on Face Morphing Attack Detection
Based on Privacy-aware Synthetic Training Data”. In: 2022 IEEE International Joint
Conference on Biometrics (IJCB). 2022, pp. 1–10. doi:
10.1109/IJCB54206.2022.10007950.

[7] Patrick Kidger. “On Neural Differential Equations”. PhD thesis. Oxford University, 2022.

[8] Patrick Kidger et al. “Efficient and Accurate Gradients for Neural SDEs”. In: Advances
in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran
Associates, Inc., 2021, pp. 18747–18761. url: https://proceedings.neurips.cc/
paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf.

35 / 38

https://doi.org/10.1109/IJCB54206.2022.10007950
https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf


References iii

[9] Patrick Kidger et al. “Neural controlled differential equations for irregular time series”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 6696–6707.

[10] Minchul Kim, Anil K Jain, and Xiaoming Liu. “AdaFace: Quality Adaptive Margin for
Face Recognition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022.

[11] Cheng Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model
Sampling in Around 10 Steps”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 5775–5787. url:
https://proceedings.neurips.cc/paper_files/paper/2022/file/

260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.

[12] Pierre Marion et al. “Implicit Diffusion: Efficient Optimization through Stochastic
Sampling”. In: arXiv preprint arXiv:2402.05468 (2024).

[13] Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural
ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).

36 / 38

https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf


References iv

[14] Ulrich Mutze. “An asynchronous leapfrog method II”. In: arXiv preprint arXiv:1311.6602
(2013).

[15] Weili Nie et al. “Diffusion Models for Adversarial Purification”. In: International
Conference on Machine Learning (ICML). 2022.

[16] Jiachun Pan et al. “AdjointDPM: Adjoint Sensitivity Method for Gradient
Backpropagation of Diffusion Probabilistic Models”. In: The Twelfth International
Conference on Learning Representations. 2024. url:
https://openreview.net/forum?id=y33lDRBgWI.

[17] Ulrich Scherhag et al. “Biometric Systems under Morphing Attacks: Assessment of
Morphing Techniques and Vulnerability Reporting”. In: 2017 International Conference of
the Biometrics Special Interest Group (BIOSIG). 2017, pp. 1–7. doi:
10.23919/BIOSIG.2017.8053499.

[18] Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential
Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.

37 / 38

https://openreview.net/forum?id=y33lDRBgWI
https://doi.org/10.23919/BIOSIG.2017.8053499
https://openreview.net/forum?id=PxTIG12RRHS


References v

[19] Haoyu Zhang et al. “MIPGAN—Generating Strong and High Quality Morphing Attacks
Using Identity Prior Driven GAN”. In: IEEE Transactions on Biometrics, Behavior, and
Identity Science 3.3 (2021), pp. 365–383. doi: 10.1109/TBIOM.2021.3072349.

[20] Haoyu Zhang et al. “Morph-PIPE: Plugging in Identity Prior to Enhance Face Morphing
Attack Based on Diffusion Model”. In: Norwegian Information Security Conference
(NISK). 2023.

[21] Juntang Zhuang et al. “MALI: A memory efficient and reverse accurate integrator for
Neural ODEs”. In: International Conference on Learning Representations (2021).

38 / 38

https://doi.org/10.1109/TBIOM.2021.3072349

	Introduction
	AdjointDEIS
	Remarks about using the continuous adjoint equations with diffusion models
	Appendix
	References


