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Introduction



Diffusion models

• Forward diffusion process is governed by the Itô SDE

dxt = f(t)xt dt+ g(t) dwt, (1)

where {wt}t∈[0,T ] is the standard Wiener process on [0, T ].

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.
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Diffusion models

• The diffusion equation can be reversed with

dxt = [f(t)xt − g2(t)∇x log pt(xt)] dt+ g(t) dw̄t, (2)

where w̄t is the reverse Wiener process and ‘dt’ is a negative timestep.

• The marginal distributions pt(x) follow the probability flow ODE1

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log pt(xt). (3)

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.
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Diffusion models

• Often the Variance Preserving (VP) framework is used where the drift and diffusion
coefficients are

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t , (4)

for some noise schedule αt, σt

• Sampling the forward trajectory then simplifies to

xt = αtx0 + σtϵt ϵt ∼ N (0, I) (5)

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.
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Diffusion models

• Train the model via score-matching to learn ∇x log pt(xt).

• This is similar to learning the noise ϵ, i.e.,

ϵθ(xt, t) ≈ −σt∇x log pt(xt). (6)

1Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.
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Problem statement

• Solve the following optimization problem:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t) dt

)
. (7)

• Or in the SDE case:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

σt
ϵθ(xt, z, t) dt+

∫ 0

T

g(t) dw̄t

)
. (8)

• To backpropagate through an ODE/SDE solve we solve the continuous adjoint equations.
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Continuous adjoint equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t). (9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [7,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)

4 / 38



Continuous adjoint equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t). (9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [7,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)

4 / 38



Continuous adjoint equations

• Let fθ describe a parameterized neural field of the probability flow ODE, defined as

fθ(xt, z, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t).︸ ︷︷ ︸

Black box model fθ(xt, z, t) loses known information of f(t) and g(t).

(9)

• Then fθ(xt, z, t) describes a neural ODE which admits an adjoint state, ax := ∂L/∂xt

(and likewise for az(t) and aθ(t)), which solve the continuous adjoint equations [7,
Theorem 5.2] in the form of the following Initial Value Problem (IVP):

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)
⊤ ∂fθ(xt, z, t)

∂θ
. (10)

4 / 38



AdjointDEIS



The continuous adjoint equations are also semi-linear

• Like diffusion ODEs the adjoint diffusion ODE is also semi-linear

dax
dt

(t) = −f(t)ax(t)︸ ︷︷ ︸
Linear

− g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (11)

• Then, the exact solution at time s given time t < s is found to be

ax(s) = e
∫ t
s
f(τ) dτax(t)︸ ︷︷ ︸

linear

−
∫ s

t

e
∫ u
s

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du︸ ︷︷ ︸

non-linear

. (12)

• Use the log-SNR trick2 to further simplify the exact solution with λt := log(αt/σt).

2Cheng Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 5775–5787. url:
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.
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Simplified exact solutions

Proposition 1 (Exact solution of adjoint diffusion ODEs3)

Given initial values [ax(t),az(t),aθ(t)] at time t ∈ (0, T ), the solution [ax(s),az(s),aθ(s)] at
time s ∈ (t, T ] of adjoint diffusion ODEs in Eq. (10) is

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ∂ϵθ(xλ, z, λ)

∂xλ
dλ, (13)

az(s) = az(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z
dλ, (14)

aθ(s) = aθ(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂θ
dλ. (15)

3Zander W. Blasingame and Chen Liu. “AdjointDEIS: Efficient Gradients for Diffusion Models”. In: The Thirty-eighth Annual Conference on Neural Information Processing
Systems. 2024. url: https://openreview.net/forum?id=fAlcxvrOEX.
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Designing bespoke ODE solvers

• We denote the n-th derivative of the scaled vector-Jacobian product by

V(n)(x;λt) =
dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

. (16)

• Use Taylor Expansion on Eq. (13) to obtain and letting h = λs − λt yields

ax(s) =
αt

αs
ax(t)︸ ︷︷ ︸

Linear term
Exactly computed

+
1

αs

k−1∑
n=0

V(n)(x;λt)

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ+O(hk+1). (17)
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• And analogously for az(t) and aθ(t).
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AdjointDEIS

Theorem 1 (AdjointDEIS-k as a k-th order solver)

Assume the function ϵθ(xt, z, t) and its associated vector-Jacobian products follow the
regularity conditions detailed in Appendix B of the main paper, then for k = 1, 2,
AdjointDEIS-k is a k-th order solver for adjoint diffusion ODEs, i.e., for the sequence
{ãx(ti)}Mi=1 computed by AdjointDEIS-k, the global truncation error at time T satisfies
ãx(tM )− ax(T ) = O(h2

max), where hmax = max1≤j≤M (λti − λti−1
). Likewise, AdjointDEIS-k

is a k-th order solver for the estimated gradients w.r.t. z and θ.

8 / 38



Certain adjoint SDEs are actually ODEs

Theorem 2

Let f : Rd × R → Rd be in C∞,1
b and g : R → Rd×w be in C1

b . Let L : Rd → R be a
scalar-valued differentiable function. Let wt : [0, T ] → Rw be a w-dimensional Wiener process.
Let x : [0, T ] → Rd solve the Stratonovich SDE

dxt = f(xt, t) dt+ g(t) ◦ dwt,

with initial condition x0. Then the adjoint process ax(t) := ∂L(xT )/∂xt is a strong solution to
the backwards-in-time ODE

dax(t) = −ax(t)
⊤ ∂f

∂xt
(xt, t) dt. (18)
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ODE solvers for the adjoint diffusion SDE

• Probability Flow ODEs are related to diffusion SDEs by the manipulations of the
Kolmogorov equations4.

• The drift term is identical to the vector field of the ODE, sans a factor of two:

dxt = f(t)xt + 2
g2(t)

2σt
ϵθ(xt, z, t) dt︸ ︷︷ ︸

Probabilty Flow ODE

+ g(t) dw̄t. (19)

• By Theorem 2 the adjoint SDE evolves with an ODE with vector field
−ax(t)

⊤∂fθ(xt, z, t)/∂xt.

• Therefore, we can use the same bespoke ODE solvers for adjoint diffusion ODEs with the
added factor of 2!

4Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=PxTIG12RRHS.
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Experiment - face morphing

(a) Identity a (b) Face morphing with AdjointDEIS (c) Identity b

Figure 1: Create a morphed face which causes a Face Recognition (FR) system to accept it with both
identities.
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Experiment - face morphing

• Goal is to adversarially attack an FR system by finding the xT , z which creates the
optimal morph.

• Optimality is defined with respect to an identity loss which is simply the average distance
between the embeddings in the FR space.

• Using AdjointDEIS massively improves the performance of Diffusion Morphs (DiM).

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR [17](↑)

Morphing Attack NFE(↓) AdaFace [10] ArcFace [5] ElasticFace [4]

Webmorph [6] - 97.96 96.93 98.36
MIPGAN-I [19] - 72.19 77.51 66.46
MIPGAN-II [19] - 70.55 72.19 65.24
DiM-A [3] 350 92.23 90.18 93.05
Fast-DiM [2] 300 92.02 90.18 93.05
Morph-PIPE [20] 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

12 / 38



Continuous adjoint equations for scheduled conditional information

• Currently, we consider constant conditional information z.

• What if the conditioning signal changed with the timestep, i.e., zt?

• Question is then how do we find ∂L/∂zt := az(t)?

• Fortunately, it reduces to a simple integral.
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Gradients of scheduled conditional information

Theorem 3

Suppose there exists a function z : [0, T ] → Rz which can be defined as a càdlàg piecewise
function where z is continuous on each partition of [0, T ] given by
Π = {0 = t0 < t1 < · · · < tn = T} and whose right derivatives exist for all t ∈ [0, T ]. Let
fθ : Rd × Rz × R → Rd be continuous in t, uniformly Lipschitz in x, and continuously
differentiable in x. Let x : R → Rd be the unique solution for the ODE

dxt

dt
= fθ(xt, zt, t),

with initial condition x0. Let L : Rd → R be a scalar-valued loss function defined on the
output of the neural ODE. Then ∂L/∂zt := az(t) and there exists a unique solution
az : R → Rz to the following IVP:

az(T ) = 0,
daz
dt

(t) = −ax(t)
⊤ ∂fθ(xt, zt, t)

∂zt
.

14 / 38



Gradients of the conditional information are still a mere integral

• As the vector fields of the ODE are independent of az we have a mere integral,

az(t) = −
∫ t

T

ax(τ)
⊤ ∂fθ(xτ , zτ , τ)

∂zτ
dτ. (20)

• We can simply replace our z with zt when performing guided generation.

• Enables us to update time-dependent conditioning signal.

• We have the flexibility to only update back to a certain t ∈ [0, T ).
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What about neural CDEs?

• Kidger [9, Theorem C.1] showed that any equation of the form

xt = x0 +

∫ t

0

hθ(xs, zs, s) ds, (21)

can be rewritten as a neural controlled differential equation (CDE) of the form

xt = x0 +

∫ t

0

fθ(xs, s) dzs, (22)

where
∫

dzs is the Riemann-Stieltjes integral.

• Note, the converse is not true.

• Neural CDEs used zt as an additional control signal, but were not interested in updating
zt.

16 / 38



What about neural CDEs?

• Kidger [9, Theorem C.1] showed that any equation of the form

xt = x0 +

∫ t

0

hθ(xs, zs, s) ds, (21)

can be rewritten as a neural controlled differential equation (CDE) of the form

xt = x0 +

∫ t

0

fθ(xs, s) dzs, (22)

where
∫

dzs is the Riemann-Stieltjes integral.

• Note, the converse is not true.

• Neural CDEs used zt as an additional control signal, but were not interested in updating
zt.

16 / 38



What about neural CDEs?

• Kidger [9, Theorem C.1] showed that any equation of the form

xt = x0 +

∫ t

0

hθ(xs, zs, s) ds, (21)

can be rewritten as a neural controlled differential equation (CDE) of the form

xt = x0 +

∫ t

0

fθ(xs, s) dzs, (22)

where
∫

dzs is the Riemann-Stieltjes integral.

• Note, the converse is not true.

• Neural CDEs used zt as an additional control signal, but were not interested in updating
zt.

16 / 38



Time scheduled conditional information in practice

• Suppose we have a fully observed, but irregularly sampled time series {zti}Ni=1 with
0 = t0 < · · · < tn = T .

• Define Z : [0, T ] → Rz as the natural cubic spline with knots at t0, . . . , tn such that
Z(ti) = zti .

• Can use this with adaptive step size solvers for ax(t).

17 / 38



Remarks about using the continuous adjoint
equations with diffusion models



Approaches for guided generation

• We will broadly categorize approaches into two categories:

◦ Solution Optimization - Only cares about finding the optimal output, x0,
◦ End-to-End Optimization - Cares about finding the optimal entire solution trajectory and

associated variables, ({xti}ni=1, z, θ).

• For this later category we need to backpropogate through an ODE/SDE solve of the
diffusion model
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Backpropagation through neural differential equations

• Discretize-then-optimize (DTO)

◦ Simplest approach, just backprop through the solver.
◦ Pros: Accuracy of gradients, fast, and easy to implement.
◦ Cons: Memory intensive, optimization w.r.t. discretization and not continuous ideal.

• Optimize-then-discretize (OTD)

◦ The adjoint method, numerically solve adjoint equations for gradients.
◦ Pros: Memory efficiency, flexibility.
◦ Cons: Computational cost, truncation errors.

• Reversible solvers

◦ Possible best of both worlds.
◦ Pros: Memory efficient and accurate gradients.
◦ Cons: Low-order and poor stability (recent work has started to address this).

• For more details we refer to Patrick Kidger’s monograph on neural differential equations5.

5Patrick Kidger. “On Neural Differential Equations”. PhD thesis. Oxford University, 2022.
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Techniques for OTD optimization of diffusion models

Table 2: Overview of different OTD methods for diffusion models.

Method ODE SDE Key Idea

DiffPure [15] ✗ ✓ First to consider OTD for diffusion models
AdjointDPM [16] ✓ ✗ Exponential integrators with OTD
Implicit Diffusion [12] ✓ ✓ Time parallelization of OTD
AdjointDEIS [1] ✓ ✓ Bespoke solvers for ODE/SDE
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The flexibility of OTD

• Beyond memory efficiency OTD provides a very flexible framework.

• We can have a different number of discretization steps for the forward and backward solve
(more relevant for models with a large number of sampling steps).

• Area of future research, can we get away with less “accurate” gradients in practice?

• Different solvers for the underlying state {xt} and gradients {ax(t)}.
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Truncation errors

• Potentially inaccurate gradients due to different estimates of {xt} in the forward and
backwards solve.

• Consider a first-order solver (DDIM, DPM-Solver-1) then given

x̂0 =
α0

αt
xt − σ0(e

h − 1)ϵθ(xt, t), h = λ0 − λt, (23)

x̂t =
αt

α0
x̂0 − σt(e

−h − 1)ϵθ(x̂0, 0), (24)

it is not necessary that for all t ∈ [0, T ] and xt ∈ Rd that

x̂t = xt, (25)

holds.

• This can be mitigated with small step sizes at the cost of increased compute.
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Stability of OTD

• Consider a simple ODE on t ∈ [0, T ] given by

dy

dt
(t) = λy(t), y(0) = y0, λ < 0. (26)

• Most ODE solvers with a non-trivial region of stability will solve the ODE without issue.

• As λ < 0, the errors decay exponentially.

• , for backwards in time solve from y(T ) the errors will exponentially.

• The adjoint ODE has the same stability properties as y.
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Reversible solvers

• Let Φ be a numerical scheme which iteratively computes (xti , αti) 7→ (xti+1
, αti+1

) where
αti is extra auxillary information.

• Φ is said to be algebraically reversible if we can compute (xti+1
, αti+1

) 7→ (xti , αti).

• Since the solver is algebraically reversible there is no truncation error.

• Reversible solvers may have better stability.

• We will review several non-symplectic6 reversible solvers.

• Consider a neural ODE on the time interval [0, T ] with definition

x(0) = x0,
dx

dt
(t) = fθ(x(t), t). (27)

6Many symplectic solvers are algebraically reversible. For more details we refer to [7].
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Asynchronous leapfrog method (ICLR 2021)

• Initially proposed by Mutze7 and popularized by Zhuang et al.8

• Is a second-order method.

Forward pass

With h := ti+1 − ti the forward pass is defined as

xti+
h
2
= xti +

1

2
vtih,

vti+1
= 2fθ(xti+

h
2
, ti + h/2)− vti ,

xti+1
= xti + fθ(xti+h/2, ti +

h

2
)h.

7Ulrich Mutze. “An asynchronous leapfrog method II”. In: arXiv preprint arXiv:1311.6602 (2013).

8Juntang Zhuang et al. “MALI: A memory efficient and reverse accurate integrator for Neural ODEs”. In: International Conference on Learning Representations (2021).
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With h := ti+1 − ti the backward pass is defined as
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h
2
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1

2
vti+1h,
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h
2
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− fθ(xti+

h
2
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Reversible Heun (NeurIPS 2021)

• Proposed by Kidger et al.9

• Works for neural ODEs, CDEs, and SDEs.

• ODE solver is a second-order method and exhibits a strong convergence of order 1 if the
noise is additive.

Forward pass

With h := ti+1 − ti the forward pass is defined as

pxti+1 = 2xti − pxti + fθ(pxti , ti)h,

xti+1 = xti +
1

2

(
fθ(pxti+1 , ti+1),fθ(pxti , ti)

)
h.

9Patrick Kidger et al. “Efficient and Accurate Gradients for Neural SDEs”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran
Associates, Inc., 2021, pp. 18747–18761. url: https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf.
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• Works for neural ODEs, CDEs, and SDEs.

• ODE solver is a second-order method and exhibits a strong convergence of order 1 if the
noise is additive.

Backward pass

With h := ti+1 − ti the backward pass is defined as

pxti = 2xti+1 − pxti+1 − fθ(pxti+1 , ti+1)h,

xti = xti+1 −
1

2

(
fθ(pxti+1 , ti+1),fθ(pxti , ti)

)
h.

Note, this method is also symmetric.
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Stability of the reversible solvers

• Consider the test equation ẏ = λy with y(0) = 1 defined on [0,∞) with λ ∈ C.

• The region of stability of a numerical solver is the values of λ which ensures the numerical
solver converges for a fixed step size.

• The region of stability for the asynchronous leapfrog method and reversible Heun are both
the complex interval [−i, i].

• Could be due to an unstable step of form 2A−B, instability is amplified when

◦ vti and fθ(xti , ti) drift apart (asynchronous leapfrog),
◦ xti and pxti drift apart (reversible Heun).
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McCallum-Foster method

• Recently, McCallum and Foster10 showed that it is possible to construct an algebraically
reversible solver from any explicit numerical ODE solver Φ : Rd × R → Rd.

• Suppose the explicit solver can be expressed as xti+1 = xti +Φh(xti , ti) with step size h.

• If Φ has k-th order convergence then reversible solver will also have k-th order
convergence.

10Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).
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• If Φ has k-th order convergence then reversible solver will also have k-th order
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Forward pass

With h := ti+1 − ti the forward pass is defined as

xti+1 = λxti + (1− λ)pxti +Φh(pxti , ti)

pxti+1 = pxti − Φ−h(xti+1 , ti+1),

where λ ∈ (0, 1] is a coupling parameter.

10Sam McCallum and James Foster. “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648 (2024).

28 / 38



McCallum-Foster method

• Recently, McCallum and Foster10 showed that it is possible to construct an algebraically
reversible solver from any explicit numerical ODE solver Φ : Rd × R → Rd.

• Suppose the explicit solver can be expressed as xti+1 = xti +Φh(xti , ti) with step size h.

• If Φ has k-th order convergence then reversible solver will also have k-th order
convergence.

Backward pass

With h := ti+1 − ti the backward pass is defined as

pxti = pxti+1 +Φ−h(xti+1 , ti+1),

xti = λ−1xti+1
+ (1− λ−1)pxti − λ−1Φh(pxti , ti).
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Non-trivial stability

Figure 2: Stability plots from McCallum and Foster [13].
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Record the solution trajectory

• A simple fix for the numerical unstability of OTD is to simply cache {xti}ni=1 during the
forward pass.

• Note, we are not storing the internal operations of the solver and network.

• The stability is much improved using this method at the cost of increased memory usage.

• For diffusion models with a small number of sampling steps this may be acceptable,
however.

• A similar approach is that of interpolated adjoints.

• Record {xτj}mj=1 and {τj}mj=1 ⊆ {ti}ni=1.

• Then for any τj > t > τj+1 interpolate between the two samples xτj and xτj+1
to find xt.
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Parallel sampling and optimization

Figure 3: Implicit Diffusion by Marion et al.11

• Fill up shift register with initial sample trajectory {xti}ni=1.

• Can now sample and backpropagate in parallel.

• Because it’s a shift register it still takes m steps to propagate an update to xT .

11Pierre Marion et al. “Implicit Diffusion: Efficient Optimization through Stochastic Sampling”. In: arXiv preprint arXiv:2402.05468 (2024).
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Thoughts on when and how to use OTD for diffusion models

• Does DTO work? Most accurate in terms of model gradients.

• If not, can we record the solution states?

• If not, consider a reversible solver for the backward pass.

• Note, in practice OTD seems to work well enough and the gradient inaccuracy might not
be a big deal in certain applications.
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