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Introduction



Generative modeling

(a) Image generation (B. 2024)

• Recently, deep generative models have popped off

• What is the common factor behind all of these models?
• They’re neural differential equations
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What is a neural differential equation anyways?

• Consider some prototypical ODE defined on [0,) ], of the form

dx
dC (C) = f (C,x(C)), x(C) = x0 (1)

where f : [0,) ] ×ℝ3 → ℝ3 is some nice vector field

• A neural ordinary differential equation simply replaces the vector field with a neural net
• I.e., we have a neural ODE of the form

dx
dC (C) = f\ (C,x(C)), x(C) = x0 (2)
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So how do neural differential equations create?

• Consider @(X1) which models real-world data

• Consider some tractable
• Consider the flow i ∈ C1,A (ℝ×ℝ3 ;ℝ3 ) which satisfies

d
dC iC (x) = uC (iC (x)) (3)

• We want to find a flow (or vector field) such that

i1 (X0) ∼ @(X1) (4)

• Then we aim to find \ such that
u\
C (x) ≈ uC (x) (5)
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Sampling with flow models

• Consider an Euler scheme with steps {C=}#==0 and step size ℎ

• Now take Euler steps…

x0 x1 x= x=+1… x#…
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Recap

Modern generative paradigm
• Create coupling (X0,X1) ∼ ? (X0)@(X1)

• Train flow (or diffusion) model to learn u\
C

• Sample with numerical ODE (or SDE) solver

• Training state-of-the-art flow models is really expensive (1000s of NVIDIA A100 hours)!
• Much more efficient to fine-tune or guide u\

C downstream to new tasks
• Flows are bijective, we can encode samples to edit them – Latent editing
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Problems

Guidance
• Guide model with a function which assesses the output

• Make guidance efficient

• Perform exact inversion (algebraic reversibility)
• Make edits resistant to deformations
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End-to-end Guidance



Preface to the section

Question. How to guide flow/diffusion models?

Z. W. Blasingame and C. Liu (2024a). “AdjointDEIS: Efficient Gradients for Diffusion Models”. In:
Advances in Neural Information Processing Systems. Ed. by A. Globerson et al. Vol. 37. Curran
Associates, Inc., pp. 2449–2483. URL: https://proceedings.neurips.cc/paper_files/
paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf.
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Given ! ∈ C1 (ℝ3 ;ℝ) find arg minx,\ !
(
i\

1 (x)
)
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Gradient descent?
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Need ∇{x,\ }!
(
i\

1 (x)
)
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A story of two gradients

Discretize-then-optimize (DTO)
• Simplest approach, just backprop through the solver
• Pros: Accuracy of gradients, fast, and easy to implement.
• Cons: Memory intensive O(=), optimization w.r.t. discretization and not continuous ideal
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• Pros: Accuracy of gradients, fast, and easy to implement.
• Cons: Memory intensive O(=), optimization w.r.t. discretization and not continuous ideal

Optimize-then-discretize (OTD)
• The adjoint method, numerically solve another ODE
• Pros: Memory efficiency O(1), flexibility
• Cons: Computational cost, truncation errors
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Techniques for OTD optimization of flow/diffusion models

Table 1: Overview of different OTD methods for flow/diffusion models.

Method ODE SDE Key Idea

DiffPure (ICML 2022)1 7 3 First to consider OTD for diffusion models
AdjointDPM (ICLR 2024)2 3 7 Exponential integrators with OTD
D-Flow (ICML 2024)3 3 7 OTD with Flow models
AdjointDEIS (NeurIPS 2024)4 3 3 Bespoke solvers for ODE/SDE, conditioning signals
Implicit Diffusion (AISTATS 2025)5 3 3 Time parallelization of OTD
OC-Flow (ICLR 2025)6 3 7 Control flow optimization on Riemannian manifolds

1 W. Nie et al. (17–23 Jul 2022). “Diffusion Models for Adversarial Purification”. In: Proceedings of the 39th International Conference on Machine Learning. Ed. by K. Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research. PMLR,
pp. 16805–16827. URL: https://proceedings.mlr.press/v162/nie22a.html.

2 J. Pan et al. (2024). “AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models”. In: The Twelfth International Conference on Learning Representations. URL: https://openreview.net/forum?id=
y33lDRBgWI.

3
H. Ben-Hamu et al. (2024). “D-Flow: Differentiating through Flows for Controlled Generation”. In: Forty-first International Conference on Machine Learning. URL: https://openreview.net/forum?id=SE20BFqj6J.

4 Z. W. Blasingame and C. Liu (2024a). “AdjointDEIS: Efficient Gradients for Diffusion Models”. In: Advances in Neural Information Processing Systems. Ed. by A. Globerson et al. Vol. 37. Curran Associates, Inc., pp. 2449–2483. URL:
https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf.

5
P. Marion et al. (2025). “Implicit Diffusion: Efficient optimization through stochastic sampling”. In: The 28th International Conference on Artificial Intelligence and Statistics. URL: https://openreview.net/forum?id=r5F7Z8s0Qk.

6
L. Wang et al. (2025). “Training Free Guided Flow-Matching with Optimal Control”. In: The Thirteenth International Conference on Learning Representations. URL: https://openreview.net/forum?id=61ss5RA1MM.
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Gradients via the continuous adjoint equations

• Pontryagin et al.7 and later Chen et al.8 showed how to find these gradients via another ODE

• Let ax (C) ≔ m!/mxC and a\ (0) ≔ m!/m\ .
• Then we have the continuous adjoint equations

ax (1) =
m!

mx1
,

dax

dC (C) = −ax (C)>
mu\

C

mx
(xC ),

a\ (1) = 0, da\

dC (C) = −ax (C)>
mu\

C

m\
(xC ).

(6)

7 L. S. Pontryagin et al. (1963). “The Mathematical Theory of Optimal Processes.”. In: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 43.10-11, pp. 514–515. DOI: https:
//doi.org/10.1002/zamm.19630431023. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19630431023. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19630431023.

8
R. T. Chen et al. (2018). “Neural ordinary differential equations”. In: Advances in neural information processing systems 31.
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Affine conditional flows

• Consider the flow model admitted by

XC = UCX1 + fCX0 (7)

• Called an affine conditional flow
• Vector field is given by
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Proposition 1 (Continuous adjoint equations for target and source prediction mod-
els). Given an affine conditional flow model with learnt vector field u\

C , then the contin-
uous adjoint equations in Eq. (6) can be rewritten w.r.t. to the target prediction model and
the source prediction model as

dax

dC (C) = − ¤fC
fC

ax (C) −
[
¤UC − UC

¤fC
fC

]
ax (C)>

mx\
1 |C

mxC

(xC ), (10)

= − ¤UC
UC

ax (C) −
[
¤fC − fC

¤UC
UC

]
ax (C)>

mx\
0 |C

mxC

(xC ); (11)

likewise, the solvers for a\ can be found, mutatis mutandis, to be

da\

dC (C) = −
[
¤UC − UC

¤fC
fC

]
ax (C)>

mx\
1 |C

m\
(xC ), (12)

= −
[
¤fC − fC

¤UC
UC

]
ax (C)>

mx\
0 |C

m\
(xC ). (13)
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Proposition 2 (Exact solution of the continuous adjoint equations for source pre-
diction models). Given an initial value [ax (C),a\ (C)] at time C ∈ (0, 1], the solution
[ax (B),a\ (B)] at time B ∈ [0, C) to the continuous adjoint equations for source prediction
models described in Proposition 1 is given by

ax (B) =
UC

UB
ax (C) +

1
UB

∫ B

C

U2
_
4−_ax (_)>

mx\
0 |_

mx_

(x_) d_,

a\ (B) = a\ (C) +
∫ B

C

U_4
−_ax (_)>

mx\
0 |_

mx_

(x_) d_,

(14)

where _C ≔ logUC/fC .
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Designing bespoke ODE solvers

• We denote the scaled vector-Jacobian product by

V (x; C) = U2
C ax (C)>

mx\
0 |C

mxC

(xC ) (15)

• Use Taylor Expansion on Eq. (14)
• Let V (=) denote the =-th derivative w.r.t. _
• Let ℎ = _B − _C ,

ax (B) =
UC

UB
ax (C)︸    ︷︷    ︸

Linear term
Exactly computed

+ 1
UB

:−1∑
==0

V (=) (x; _C )
∫ _B

_C

(_ − _C )=
=! 4−_ d_ + O(ℎ:+1) (16)

20 / 56



Designing bespoke ODE solvers

• We denote the scaled vector-Jacobian product by

V (x; C) = U2
C ax (C)>

mx\
0 |C

mxC

(xC ) (15)

• Use Taylor Expansion on Eq. (14)

• Let V (=) denote the =-th derivative w.r.t. _
• Let ℎ = _B − _C ,

ax (B) =
UC

UB
ax (C)︸    ︷︷    ︸

Linear term
Exactly computed

+ 1
UB

:−1∑
==0

∫ _B

_C

(_ − _C )=
=! 4−_ d_ + O(ℎ:+1) (16)

20 / 56



Designing bespoke ODE solvers

• We denote the scaled vector-Jacobian product by

V (x; C) = U2
C ax (C)>

mx\
0 |C

mxC

(xC ) (15)

• Use Taylor Expansion on Eq. (14)
• Let V (=) denote the =-th derivative w.r.t. _

• Let ℎ = _B − _C ,

ax (B) =
UC

UB
ax (C)︸    ︷︷    ︸

Linear term
Exactly computed

+ 1
UB

:−1∑
==0

+ O(ℎ:+1) (16)

20 / 56



Designing bespoke ODE solvers

• We denote the scaled vector-Jacobian product by

V (x; C) = U2
C ax (C)>

mx\
0 |C

mxC

(xC ) (15)

• Use Taylor Expansion on Eq. (14)
• Let V (=) denote the =-th derivative w.r.t. _
• Let ℎ = _B − _C ,

ax (B) =
UC

UB
ax (C)︸    ︷︷    ︸

Linear term
Exactly computed

+ 1
UB

:−1∑
==0

+ (16)

20 / 56



Designing bespoke ODE solvers

• We denote the scaled vector-Jacobian product by

V (x; C) = U2
C ax (C)>

mx\
0 |C

mxC

(xC ) (15)

• Use Taylor Expansion on Eq. (14)
• Let V (=) denote the =-th derivative w.r.t. _
• Let ℎ = _B − _C ,

ax (B) =
UC

UB
ax (C)︸    ︷︷    ︸

Linear term
Exactly computed

+ 1
UB

:−1∑
==0

V (=) (x; _C )︸        ︷︷        ︸
Derivatives

Approximated

+ (16)

20 / 56



Designing bespoke ODE solvers

• We denote the scaled vector-Jacobian product by

V (x; C) = U2
C ax (C)>

mx\
0 |C

mxC

(xC ) (15)

• Use Taylor Expansion on Eq. (14)
• Let V (=) denote the =-th derivative w.r.t. _
• Let ℎ = _B − _C ,

ax (B) =
UC

UB
ax (C)︸    ︷︷    ︸

Linear term
Exactly computed

+ 1
UB

:−1∑
==0

V (=) (x; _C )︸        ︷︷        ︸
Derivatives

Approximated

∫ _B

_C

(_ − _C )=
=! 4−_ d_︸                      ︷︷                      ︸

Cœfficients
Analytically computed

+ (16)

20 / 56
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• We denote the scaled vector-Jacobian product by
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Derivatives
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∫ _B

_C

(_ − _C )=
=! 4−_ d_︸                      ︷︷                      ︸

Cœfficients
Analytically computed

+ O(ℎ:+1)︸    ︷︷    ︸
Higher-order errors

Omitted

(16)
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A first-order solver

First-order solver
Given an initial augmented adjoint state [ax (C),a\ (C)] at time C ∈ (0, 1], the solution
[ax (B),a\ (B)] at time B ∈ [0, C) is approximated by

ax (B) =
UC

UB
ax (C) +

fB

U2
B

(4ℎ − 1)V (x; C)

a\ (B) = a\ (C) +
fB

UB
(4ℎ − 1)V (\ ; C).

(17)
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Recap

• Guide generative process with !

• Backprop though discretization – high memory consumption O(=)
• Solve another ODE which models gradients – constant memory O(1)
• Lots of compute
• Backwards solve is decoupled
• What’s the smallest number of discretization steps we can get away with?
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Greedy Guidance



Preface to the section

Question. How to efficiently compute the gradients?

Z. W. Blasingame and C. Liu (2025b). “Greed is Good: Guided Generation from a Greedy
Perspective”. In: Frontiers in Probabilistic Inference: Learning meets Sampling. URL:
https://openreview.net/forum?id=o4yQzZ5qCW.

23 / 56

https://openreview.net/forum?id=o4yQzZ5qCW


Posterior sampling

• Recall the target prediction formula

x1 |C (x) = �[X1 |XC = x] (18)

• Use this estimate of the posterior to perform guidance,

∇x!(x1 |C (x)) (19)
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We view posterior guidance as a greedy strategy of end-to-end guidance

25 / 56



Training-free
guided generation

Posterior sampling

UGD (Bansal et al. 2023)

DPS (Chung et al. 2023)

FreeDoM (Yu et al. 2023)

End-to-end
optimization

State optimization

AdjointDPM (Pan et al. 2024)

AdjointDEIS (Z. W. Blasingame and C. Liu
2024a)

D-Flow (Ben-Hamu et al. 2024)

Implicit diffusion (Marion et al. 2025)

Control signal
optimization

FlowGrad (X. Liu et al. 2023)

OC-Flow (L. Wang et al. 2025)

A greedy strategy
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End-to-end guidance

State optimization Control signal optimization

Posterior guidance
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Proposition 3 (Exact solution of affine probability paths). Given an initial value of
xB at time B ∈ [0, 1] the solution xC at time C ∈ [0, 1] of an affine probability path is:

xC =
fC

fB
xB + fC

∫ WC

WB

x\
1 |W (xW ) dW, (20)

where WC = UC/fC .
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Greedy as an explicit Euler scheme with DTO

• Consider the Taylor expansion of Eq. (20)

• Then, the first-order expansion is
• Drop high-order error terms
• In the limit as C → 1, UC → 1, fC → 0

xC =
fC

fB
xB + fC

:−1∑
==0

d=

dW=

[
x\

1 |W (xW )
]
W=WB

ℎ=+1

=! + O(ℎ:+1) (21)

• Hence, the greedy gradient ∇x!(x\
1 |C (xC )), can be viewed as a DTO scheme with a large

explicit Euler step.
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Greedy as an implicit Euler scheme with OTD

• Now consider an OTD scheme

• Continuous adjoint equations have a form of

ax (B) =
fC

fB
ax (C) + fC

∫ WC

WB

ax(W)>
mx\

1 |W (xW )
mxW

dW (22)

• Then in the limit as C → 1 the first iteration of a fixed-point iteration scheme yields

ax (B) ≈ ax (1)>
mx\

1 |C (xB )
mxB

= ∇x!(x\
1 |B (xB )) (23)
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Experimental case study – Face morphing

(a) Identity 0 (b) Face morphing with DiM (c) Identity 1

• Z. W. Blasingame and C. Liu (2024d) proposed Diffusion Morphs (DiM)
• We apply a greedy gradient strategy to DiM and compare it to end-to-end optimization

with DiM
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Experimental case study – Face morphing

(a) Identity 0 (b) Webmorph (c) DiM (d) MIPGAN-II (e) Identity 1

Comparison of different face morphing pipelines on the FRLL (DeBruine and Jones 2017) dataset
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Experimental case study – Face morphing

(a) Identity 0 (b) DiM-A (c) Fast-DiM (d) Morph-PIPE (e) Adjoint-DiM (f) Greedy-DiM (g) Identity 1

Comparison of ODE-based DiM morphs on the FRLL (DeBruine and Jones 2017) dataset
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Experimental case study – Face morphing

MMPMR @ FMR = 0.1%(↑)

Morphing Attack Framework NFE(↓) AdaFace ArcFace ElasticFace

FaceMorpher (Huber et al. 2022) Landmark - 89.78 87.73 89.57
Webmorph (Huber et al. 2022) Landmark - 97.96 96.93 98.36
OpenCV (Huber et al. 2022) Landmark - 94.48 92.43 94.27

MIPGAN-I (H. Zhang, Venkatesh, et al. 2021) GAN - 72.19 77.51 66.46
MIPGAN-II (H. Zhang, Venkatesh, et al. 2021) GAN - 70.55 72.19 65.24

DiM-A (Z. W. Blasingame and C. Liu 2024d) DiM 350 92.23 90.18 93.05
Fast-DiM (Z. W. Blasingame and C. Liu 2024b) DiM 300 92.02 90.18 93.05
Morph-PIPE (H. Zhang, Ramachandra, et al. 2023) DiM 2350 95.91 92.84 95.5
Adjoint-DiM (Z. W. Blasingame and C. Liu 2024a) DiM 2250 99.8 98.77 99.39
Greedy-DiM (Z. W. Blasingame and C. Liu 2024c) DiM 270 100 100 100

Effectiveness of face morphing attacks on the SYN-MAD 2022 (Huber et al. 2022) evaluation
dataset
1st place, 2nd place, 3rd place
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Proposition 4 (Gradient of target prediction model (Ben-Hamu et al. 2024)). For
affine Gaussian probability paths, the gradient of the target prediction model x\

1 |C (x)
w.r.t. x is proportional to the variance of ?1 |C (x1 |x), i.e.,

∇xx
\
1 |C (x) =

UC

f2
C

Var1 |C (x), (24)

where
Var1 |C (x) = �?1|C (x1 |x)

[
(x1 − x\

1 |C (x)) (x1 − x\
1 |C (x))

>
]
. (25)
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Theorem 5 ((Ben-Hamu et al. 2024)). For the standard affine Gaussian probability
path, the differential of i\

0,1 (x) as of function of x is

∇xi
\
0,1 (x) = f1T exp

[∫ 1

0

1
2 ¤WCVar1 |C (x) dC

]
, (26)

where T exp denotes the time-ordered exponential.

The time-ordered exponential is defined as

T exp
[∫ C

0
A(B) dB

]
=

∞∑
==1

(−1)=
=!

∫ C

0
dB1 · · ·

∫ C

0
dB= T {A(B1) . . .A(B=)} (27)
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Proposition 6 (Dynamics of greedy gradient guidance). Consider the standard affine
Gaussian probability paths model trained to zero loss. The Gateaux differential of x at
some time C ∈ [0, 1] in the direction of the gradient ∇xL

(
x\

1 |C (x)
)
is given by

XG
xi

\
C,1 (x) = −∇xi

\
C,1 (x)∇xx

\
1 |C (x)

>∇x1L(x1). (28)
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Reversible Solvers



Preface to the section

Question 1. How to perform exact inversion with diffusion models?
Question 2. Whilst minimizing distortions of edits?

Z. W. Blasingame and C. Liu (2025a). “A Reversible Solver for Diffusion SDEs”. In: ICLR 2025
Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy. URL:
https://openreview.net/forum?id=0gEFLVUL6n
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Exact inversion with flow/diffusion models

• Flows, by definition, are bijective

• Then
x = (i1 ◦ i−1

1 ) (x) (29)

• But in practice we use a numerical solver
• Thus there will likely be a misalignment of the truncation errors
• To solve this we need algebraically reversible numerical solvers
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Algebraically reversible solvers

• Consider a numerical scheme

(x=,α=) ↦→ (x=+1,α=+1), (30)

where α= denotes auxiliary information stored by the scheme

• Such a solver is algebraically reversible if

(x=+1,α=+1) ↦→ (x=,α=), (31)

can be written in closed form
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Overview of reversible solvers

Number of Local Region of Proof of
Solver extra states truncation error linear stability convergence

General ODEs
Asynchronous leapfrog (ICLR 2021)9 1 O(ℎ3) 7 3

Reversible Heun (NeurIPS 2021)10 1 O(ℎ3) 7 3

McCallum-Foster (Pre-print 2024)11 1 O(ℎ:+1) 3 3

Probability flow ODEs
EDICT (CVPR 2023)12 1 O(ℎ) 7 7

BDIA (ECCV 2024)13 1 O(ℎ2) 7 7

BELM (NeurIPS 2024)14 : − 1 O(ℎ:+1) 7 ∼

9
J. Zhuang et al. (2021). “MALI: A memory efficient and reverse accurate integrator for Neural ODEs”. In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=blfSjHeFM_e.

10
P. Kidger et al. (2021). “Efficient and accurate gradients for neural sdes”. In: Advances in Neural Information Processing Systems 34, pp. 18747–18761.

11
S. McCallum and J. Foster (2024). “Efficient, Accurate and Stable Gradients for Neural ODEs”. In: arXiv preprint arXiv:2410.11648.

12
B. Wallace, A. Gokul, and N. Naik (2023). “Edict: Exact diffusion inversion via coupled transformations”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22532–22541.

13 G. Zhang, J. P. Lewis, and W. B. Kleijn (2024). “Exact Diffusion Inversion via Bidirectional Integration Approximation”. In: Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part
LVII. Milan, Italy: Springer-Verlag, pp. 19–36. ISBN: 978-3-031-72997-3. DOI: 10.1007/978-3-031-72998-0_2. URL: https://doi.org/10.1007/978-3-031-72998-0_2.

14 F. Wang et al. (2024). “BELM: Bidirectional Explicit Linear Multi-step Sampler for Exact Inversion in Diffusion Models”. In: The Thirty-eighth Annual Conference on Neural Information Processing Systems. URL: https://openreview.net/
forum?id=ccQ4fmwLDb.
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Minimizing distortion of edits

Figure 5: Change from lion to tiger. From left to right: Source image, SDE Solve, ODE Solve. From S. Nie
et al. (2024)

SDEs contract errors, ODEs are preserve errors15

15
S. Nie et al. (2024). “The Blessing of Randomness: SDE Beats ODE in General Diffusion-based Image Editing”. In: The Twelfth International Conference on Learning Representations. URL: https://openreview.net/forum?id=DesYwmUG00.
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Minimizing distortion of edits

(a) Identity 0 (b) DiM (ODE Solver) (c) DiM (SDE Solver) (d) Identity 1
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Diffusion models as SDEs

x0 x)

dXC = f (XC , C) dC + 6(C) dWC

x0 x)

dXg = [−f (Xg , g) + 62 (g)∇x log ?g (Xg )] dg + 6(g) dW g
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Choice of noise

Proposition 7 (Cœfficients of Gaussian processes with fixed perturbation kernel).
Given a linear Itô SDE,

dXC = 5 (C) dCXC + 6(C) dWC , (32)

a strictly monotonically decreasing function UC ∈ C∞ (ℝ;ℝ≥0), a strictly monotonically
increasing function fC ∈ C∞ (ℝ;ℝ≥0), with boundary conditions U0 = 1 and f0 = 0; and
desired transition kernel for the Itô process described by the SDE of the form

@C |0 (xC |x0) = ?N (xC ;UCx0, f
2
C I), (33)

then the drift and diffusion cœfficients for the SDE are

5 (C) = d logUC
dC , 62 (C) =

df2
C

dC − 2f2
C

d logUC
dC . (34)
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Reversible solvers for SDEs

• The only reversible solver for SDEs is Kidger’s reversible Heun

• We extend to the McCallum-Foster method to SDEs
• And we develop a bespoke reversible solver for diffusion models
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Overview of reversible solvers for diffusion SDEs

Scheme Bespoke solver Memory ODE Stability

Reversible Heun (NeurIPS 2021)16 7 O() ) 7

CycleDiffusion (ICCV 2023)17 3 O(3) ) 7

Ours (ICLR 2025)18 3 O() ) 3

16
P. Kidger et al. (2021). “Efficient and accurate gradients for neural sdes”. In: Advances in Neural Information Processing Systems 34, pp. 18747–18761.

17
C. H. Wu and F. D. la Torre (2023). “A Latent Space of Stochastic Diffusion Models for Zero-Shot Image Editing and Guidance”. In: ICCV.

18
Z. W. Blasingame and C. Liu (2025a). “A Reversible Solver for Diffusion SDEs”. In: ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy. URL: https://openreview.net/forum?id=0gEFLVUL6n.
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What to do with the noise?

• Integrating in forward-time and reverse-time with SDEs is hard

• A pathwise interpretation of SDEs can make this easier
• We make use of Terry Lyons’ theory of rough paths19

• This allows us to discuss a stochastic process XC pathwise
• Fix an l , then there is a deterministic map WC (l) ↦→ XC (l)
• How do we find WC in reverse-time?
• Naïve solution is to just store WC entirely in memory
• Let’s not do that

19
T. J. Lyons (1998). “Differential equations driven by rough signals”. In: Revista Matemática Iberoamericana 14.2, pp. 215–310.
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The Brownian Interval

[0,) ]

[0, B] [B,) ]

[B, C] [C,) ]

• Let WB,C =WC −WB denote the Brownian interval on [B, C]

• Kidger et al.20 propose an algorithm using a splittable PRNG21

• We want to find WB,C , 0 < B < C < )

• Start with W0,) =W)

• Use Lévy’s Brownian bridge formula to find W0,B and WB,)

• Repeat to find WB,C

20
P. Kidger (2022). “On Neural Differential Equations”. Available at https://arxiv.org/abs/2202.02435. Ph.D. thesis. Oxford University.

21
K. Clæssen and M. H. Pałka (2013). “Splittable pseudorandom number generators using cryptographic hashing”. In: ACM SIGPLAN Notices 48.12, pp. 47–58.
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Towards a bespoke reversible SDE solver with target prediction

• Recall the reverse-time diffusion SDE.

• Recall the definition of target prediction
• Then with a little algebra,

dXC = [5 (C)XC − 62 (C)∇x log ?C (XC )] dC + 6(C) ◦ dW C (35)
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f2
C
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f2
C
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Towards a bespoke reversible SDE solver with target prediction

• Recall the reverse-time diffusion SDE.
• Recall the definition of target prediction
• Then with a little algebra,

dXC =

[(
5 (C) + 62 (C)

f2
C

)
XC −

UC

f2
C

62 (C)x0 |C (XC )
]

dC + 6(C) ◦ dW C (35)
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Proposition 8 (Exact solution of diffusion SDEs with target prediction). Given an
initial value XB = xB at time B ∈ [0,) ] the exact solution of Eq. (35) can be expressed as

XC =
fC

fB
4_B−_CXB︸        ︷︷        ︸

Linear term
No truncation errors

+ 2UC
∫ _C

_B

42(_−_C )x0 |_ (X_) d_︸                                  ︷︷                                  ︸
Approximated term

Truncation errors

+
√

2fC4−_CWeB ,eC︸              ︷︷              ︸
Brownian interval
No truncation errors

, (36)

where eC =
1
2 (4

2_C − 42_) ) and {WC : 0 ≤ C ≤ ) } is the standard Brownian motion.
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A reversible solver for diffusion SDEs

• Let Ψℎ denote an explicit one-step method for the integral term in Eq. (36)
• Let Z ∈ (0, 1] denote a coupling parameter used for stability
• Let ℎ ≔ _C − _B be the step size in the log-SNR domain
• Initialize x̂0 = x0

Forward step

x=+1 = Zx= + (1 − Z )x̂= + f=+1
f=

4−ℎx̂= + 2U=+1Ψℎ (C=, x̂=) +
√

2f=+14
−_=+1We=,e=+1

x̂=+1 = x̂= − f=

f=+1
4ℎx=+1 − 2U=Ψ−ℎ (C=+1,x=+1) +

√
2f=4−_=We=,e=+1
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• Let Ψℎ denote an explicit one-step method for the integral term in Eq. (36)
• Let Z ∈ (0, 1] denote a coupling parameter used for stability
• Let ℎ ≔ _C − _B be the step size in the log-SNR domain
• Initialize x̂0 = x0

Backward step

x̂= = x̂=+1 + f=

f=+1
4ℎx=+1 + 2U=Ψ−ℎ (C=+1,x=+1) −

√
2f=4−_=We=,e=+1

x= = Z −1x=+1 + (1 − Z −1)x̂= − f=+1
f=

4−ℎZ −1x̂= + 2U=+1Z
−1Ψℎ (C=, x̂=)

−
√

2f=+14
−_=+1Z −1We=,e=+1
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An illustration

(a) DDIM inversion with 20 steps

(b) Reversible DDIM with 20 steps

(c) Reversible diffusion SDE with 20 steps
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Conclusion



Summary

End-to-end guidance
• Developed a family of bespoke numerical solvers for the continuous adjoint equations of

flow/diffusion models

• Showed how to find the gradients of a time-dependent conditioning signal
• We showed that the continuous adjoint equations for additive noise SDEs are actually ODEs

• We connect posterior and end-to-end guidance in a unified framework
• We show that a greedy strategy makes good decisions
• Provide some justifications for why greed is good

• We developed a reversible solver for SDEs with exact inversion and low distortion
• We show that prior diffusion methods for exact inversion are just the midpoint method
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Future directions

• Compute vs accuracy of gradients.

• Parallelized strategies for gradient computation.
• Gradient-free guidance.
• Reversible solvers for continuous-time discrete-space processes.
• Applications of reversible solvers to latent editing in AI4Science applications.
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