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Motivation Highlighted Results Relative Strength Metric

= We propose a metric to measure the relative strength between morphing attacks.
= The transferability of morphing attack « to 3 is defined as

T(a,f) = P(f*(X7) = 1] f9(X%) = 1) (10
where X%, X7 are morphs created by «, 8 and £ is a detector trained on a.
= The relative strength metric (RSM) from « to S is:
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Figure 1. Example morphs generated via DiM. Samples are from FRLL dataset [1].
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= Face Recognition (FR) systems are vulnerable to face morphing attacks [2, 3].

= Two broad classes of morphing attacks:
1. Landmark-based attacks
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Nearly all representation-based attacks are based on the GAN framework Figure 3. Comparison across different morphing algorithms of two identity pairs from the FRLL dataset. R . . . . o R . . . . o
= Diffusion models have been shown to outperform GANSs [4] & & & & S R
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= We propose a novel family of face morphing attacks known as Diffusion Morphs (DilV) Valicaton Atack Valdaton Atack
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= The Mated Morph Presentation Match Rate (MMPMR) metric [6] is defined as

Methodology M Figure 4. Blue indicates strong strength and red indicates weak strength.
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o UN(”) where ¢ is the verification threshold, S)}, is the similarity score of the n-th subject of morph m, Ny, is the total
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= \We measure the vulnerability of an FR system w.r.t. a morphing attack using MMPMR " First morphing attack to use diffusion models
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= Diffusion morphs are able to fool FR systems while retaining high visual fidelity
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= Novel metric to compare the relative strength of morphing attacks
Table 1. Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset [7]. FMR = 0.1%. = Diffusion morphs are very difficult to detect if the detector is not trained against them

Figure 2. Overview of the DIM pipeline.
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