
Greedy-DiM: GreedyAlgorithms for Unreasonably Effective Face Morphs
ZanderW. Blasingame Chen Liu

Department of Electrical and Computer Engineering
Clarkson University

{blasinzw, cliu}@clarkson.edu

Motivation

(a) identity a (b) Morphed image (c) identity b

Figure 1. Example of a morph created using Greedy-DiM. Samples are from the FRLL dataset [1].

DiffusionMorphs (DiM) are a recent SOTA algorithm for creating face morphs [2]

Identity guided generation greatly increases the effectiveness of face morphing [3]

Currently, there exists no algorithm for DiMs which perform identity guided generation!

We propose Greedy-DiM, a family of algorithms to perform identity guided generation

with diffusion models

Table 1. Comparison of existing DiM methods in the literature and our proposed algorithm.

DiM [2] Fast-DiM [4] Morph-PIPE [5] Ours (Greedy-DiM)

ODE solver DDIM DPM++ 2M DDIM DDIM

Forward ODE solver DiffAE DDIM DiffAE DiffAE

Number of sampling steps 100 50 2100 20

Heuristic function 7 7 L∗
ID L∗

ID

Search strategy 7 7 Brute-force search Greedy optimization

Search space (S) 7 7 21 Morphs Image space (X )
P(S) 7 7 0 1

Methodology

Figure 2. Overview of a single step of the Greedy-DiM* algorithm. Proposed changes highlighted in green.

The Variance Preserving (VP) diffusion process is governed by an Itô SDE

dxt = f (t)xt dt + g(t) dwt (1)

f (t) = d log αt

dt
g2(t) =

dσ2
t

dt
− 2d log αt

dt
σ2

t (2)

with noise schedule α2
t + σ2

t = 1 such that xt = αtx0 + σtε where ε ∼ N (0, I) [6]
Diffusion models train a U-Net to learn the added noise εθ(xt, t) ≈ ε

To draw samples from pdata(x) = p0(x0), solve the Probability Flow ODE [6]
dxt

dt
= f (t)xt + g2(t)

2σt
εθ(xt, t) (3)

Let Φ denote a first-order numerical ODE solver to the PF ODE
We use the identity loss L∗

ID [3] defined as

LID = d(vab, va) + d(vab, vb) Ldiff =
∣∣d(vab, va) − d(vab, vb))

∣∣ (4)

L∗
ID = LID + Ldiff (5)

where va = F (x(a)
0 ), vb = F (x(b)

0 ), vab = F (x(ab)
0 ), and F : X → V is an FR system which

embeds images into a vector space V which is equipped with a measure of distance, d

Greedily search for optimal ε∗ w.r.t H at each time step tn using x0-prediction

x̂0 =
x(ab)

tn
− σtε

αt
(6)

Greedy-DiM-S: Preforms a greedy search over 21 blend values of ε at each step tn

Greedy-DiM*: Greedy gradient descent over X to find ε∗

Highlighted Results
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Figure 3. Comparison of DiM morphs on the FRLL dataset.

Evaluated the proposed morphing attack on the recent SYN-MAD 2022 dataset [7]

Compared against three landmark-based morphs: OpenCV, FaceMorpher, and Webmorph

Compared against two identity GAN algorithms: MIPGAN-I and MIPGAN-II

Compared against prior DiM algorithms: DiM-A, DiM-C, Fast-DiM, Fast-DiM-ode, and Morph-PIPE

Used three FR systems representing the SOTA: ArcFace [8], AdaFace [9], and ElasticFace [10]

The Mated Morph Presentation Match Rate (MMPMR) metric [11] is defined as

M(δ) = 1
M

M∑
n=1

{[
min

n∈{1,...,Nm}
Sn

m

]
> δ

}
(7)

where δ is the verification threshold, Sn
m is the similarity score of the n-th subject of morph m, Nm is the total

number of contributing subjects to morph m, and M is the total number of morphed images

The Morphing Attack Potential (MAP) [12] metric is defined such that MAP[r, c] denotes the proportion of
morphed images that successfully register a false accept against at least r attempts against each contributing
subject of at least c FR systems

Table 2. Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset. FMR = 0.1%.

MMPMR(↑)

Morphing Attack NFE(↓) AdaFace ArcFace ElasticFace

FaceMorpher [7] - 89.78 87.73 89.57

Webmorph [7] - 97.96 96.93 98.36

OpenCV [7] - 94.48 92.43 94.27

MIPGAN-I [3] - 72.19 77.51 66.46

MIPGAN-II [3] - 70.55 72.19 65.24

DiM-A [2] 350 92.23 90.18 93.05

DiM-C [2] 350 89.57 83.23 86.3

Fast-DiM [4] 300 92.02 90.18 93.05

Fast-DiM-ode [4] 150 91.82 88.75 91.21

Morph-PIPE [5] 2350 95.91 92.84 95.5

Greedy-DiM-S 350 95.71 93.87 95.3

Greedy-DiM* 270 100 100 100

Table 3. MAP(↑) metric for all three FR systems on the SYN-MAD 2022 dataset. FMR = 0.1%.

Number of FR Systems

Morphing Attack NFE(↓) 1 2 3

FaceMorpher [7] - 92.23 89.57 85.28

Webmorph [7] - 98.77 98.36 96.11

OpenCV [7] - 97.55 93.87 89.78

MIPGAN-I [3] - 85.07 72.39 58.69

MIPGAN-II [3] - 80.37 69.73 57.87

DiM-A [2] 350 96.93 92.43 86.09

DiM-C [2] 350 92.84 87.53 78.73

Fast-DiM [4] 300 97.14 92.43 85.69

Fast-DiM-ode [4] 150 95.91 91.21 84.66

Morph-PIPE [5] 2350 98.16 95.71 90.39

Greedy-DiM-S 350 97.34 95.71 91.82

Greedy-DiM* 270 100 100 100

Theoretical Results

Figure 4. Illustration of the search space

in R2 of different DiM algorithms at a
single step. Purple denotes

Morph-PIPE/Greedy-DiM-S, red denotes

Greedy-DiM-S continuous, and green

denotes Greedy-DiM*.

Theorem1.Given a sequence ofmonotonically descend-

ing time steps, {tn}N
n=1, from T to 0, the DDIM solver to

the Probability Flow ODE, and a heuristic function H,

then the locally optimal solution admitted by Greedy-

DiM* at time tn is globally optimal.

Theorem 2. Let P be a probability distribution on a com-

pact subset X ⊆ Rn with full support on X which mod-

els the distribution of the optimal x∗
0 and is absolutely

continuous w.r.t. the n-dimensional Lebesgue measure

λn on X . Let SP , SS, S∗ denote the search spaces of

the Morph-PIPE, Greedy-DiM-S, and Greedy-DiM* algo-

rithms. Then the following statements are true.

1. P(SP ) = P(SS) = 0.
2. P(S∗) = 1.

Additional Morphed Images

Figure 5. Morphed images generated via Greedy-DiM*.

Conclusion

SOTA morphing attack which outperforms all previous morphing attacks

First representation-based morphing attack to consistently outperform landmark-based

morphing attacks

Developed a novel strategy to incorporate identity guidance for diffusion models

Adds little overhead compared to the original DiM algorithms

Much less overhead than Morph-PIPE with superior performance

Greedy guided generation can be applied to other guided diffusion problems
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