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Theorem 1. Given a sequence of monotonically descend-
ing time steps, {t,}.\_;, from T to 0, the DDIM solver to
the Probability Flow ODE, and a heuristic function H,
then the locally optimal solution admitted by Greedy-

DiM™ at time t,, is globally optimal.

Theorem 2. Let IP be a probability distribution on a com-
pact subset X C R™ with full support on X which mod-
els the distribution of the optimal x; and is absolutely
continuous w.r.t. the n-dimensional Lebesgue measure
in R? of different DiM algorithms at a ANton X. Let Sp,Sgq,S* denote the search spaces of
single step. Purple denotes the Morph-PIPE, Greedy-DiM-S, and Greedy-DiM™ algo-

Morph-PIPE/Greedy-DiM-5, red denotes  rithms. Then the following statements are true.
Greedy-DiM-S continuous, and green
denotes Greedy-DiM*. 1. P(Sp) =P(Sq) = 0.

2. P(§F) = 1.

(a) identity a (b) Morphed iage (c) identity b

Figure 4. lllustration of the search space
Figure 1. Example of a morph created using Greedy-DiM. Samples are from the FRLL dataset [1].

= Diffusion Morphs (DiM) are a recent SOTA algorithm for creating face morphs [2] (b) DIM-A (c) Fast-DiM (d) Morph-PIPE (e) Greedy-DiM*

(f) identity b

(a) identity a

= |dentity guided generation greatly increases the effectiveness of face morphing [3]

= Currently, there exists no algorithm for DiMs which perform identity guided generation! Figure 3. Comparison of DiM morphs on the FRLL dataset.

= We propose Greedy-DiM, a family of algorithms to perform identity guided generation
with diffusion models

Additional Morphed Images

= Evaluated the proposed morphing attack on the recent SYN-MAD 2022 dataset | /]

= Compared against three landmark-based morphs: OpenCV, FaceMorpher, and Webmorph

= Compared against two identity GAN algorithms: MIPGAN-I and MIPGAN-|

= Compared against prior DIM algorithms: DiIM-A, DIM-C, Fast-DiM, Fast-DiM-ode, and Morph-PIPE

Table 1. Comparison of existing DiM methods in the literature and our proposed algorithm.

DiM [2] Fast-DiM [4] Morph-PIPE [5] Ours (Greedy-DiM)
ODE <olver ODIM DPM++ 9M ODIM ODIM = Used three FR systems representing the SOTA: ArcFace [8], AdaFace [?], and ElasticFace [10]
Forward ODE solver DIiffAE DDIM DIiffAE DIffAE = The Mated Morph Presentation Match Rate (MMPMR) metric [11] is defined as
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P(S) X X O 1 where § is the verification threshold, S}}, is the similarity score of the n-th subject of morph m, Ny, is the total
number of contributing subjects to morph m, and M is the total number of morphed images
M = The Morphing Attack Potential (MAP) [12] metric is defined such that MAP|r, ¢| denotes the proportion of
ethodology . . . . .
morphed images that successfully register a false accept against at least r attempts against each contributing
subject of at least ¢ FR systems
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‘ ” TXo=— ” Table 2. Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset. FMR = 0.1%. Figure 5. Morphed images generated via Greedy-DiM™.
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FaceMorpher [7] - 89.78 87.73 89.57 , . . ,
Figure 2. Overview of a single step of the Greedy-DiM* algorithm. Proposed changes highlighted in green. Webmorph [7] : 97.96 96.93 98.36 * SOTA morphing attack which outperforms all previous morphing attacks
OpenCV [7/] - 74.48 92.43 74.27 = First representation-based morphing attack to consistently outperform landmark-based
MIPGAN-I [3] - 72.19 /7.51 66.46 morphing attacks
= The Variance Preserving (VP) diffusion process is governed by an Itd6 SDE MIPGAN-II (3] : 70.55 72.19 65.24 . L . L
DiM-A [2] 350 99 23 90.18 9305 = Developed a novel strategy to incorporate identity guidance for diffusion models
dx; = f(t)x¢ dt + g(t) dwy (1) DIM-C [2] 350 89.57 83.23 80.3 = Adds little overhead compared to the original DiM algorithms
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