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Motivation

(a) Digitally Morphed Image (b) Print-Scanned Morphed image (c) Amplified Print-scan Artifacts

Figure 1. Example of a morph before and after undergoing print-scanning. Samples are from the FRLL

dataset [1].

Print-scanned Diffusion Morphs (DiM) which are a recent SOTA algorithm for creating

face morphs [2]

Introducing print-scanned elements into an evaluation with digital images creates

uncertainty in Single-image Morphing Attack Detection (S-MAD).

Print-Scanned and digital morphs currently are not evaluated against print-scanned

bona fides.

We propose a heterogeneous attack configuration where during evaluation a detector

should be trained to detect images that contain elements that are both digital and

print-scanned in nature.

Table 1. Attack scenarios to evaluate impact of heterogeneous data

Configuration Morph Bona Fide

D-D Digital Digital

D-PS Digital Print-Scanned

PS-D Print-Scanned Digital

PS-PS Print-Scanned Print-Scanned

Methodology

Figure 2. Heterogeneous morph attack pipeline in a simulated real-world scenario.

Images are digitally arranged on an 8.5 × 12 inch blank PNG. JavaScript scripts are used
to send the pages to Adobe Photoshop for print management to maintain ICC profiles.

A Canon Pixma Pro 100 Printer and Epson 850v Pro Scanner were used for printing

and scanning. All print-scanned images were set at a 600 × 600 resolution with a
pixel-per-inch value of 300 to replicate a passport photo of size two inches by 2 inches

while also maintaining their original aspect ratio.

Images are saved as Portable Network Graphics (PNG) files without compression to

avoid adding additional artifacts.

The morphs, component identity pairs, and alternate bona fide identity images were

print-scanned for evaluation. This resulted in 8,142 morphs and 4,653 bona fide

images being print-scanned. This work used the bona fide pairs developed in [3] for

our FRGC, FERET, and FRLL pairings and was used to create the DiM, OpenCV, and

StyleGAN2 morphs.

Vulnerablity Study

(a) Digital identity a (b) Digital DiM-C (c) Digital OpenCV (d) Digital StyleGan2 (e) Digital identity b

(f) PS identity a (g) PS DiM-C (h) PS OpenCV (i) PS StyleGan2 (j) PS identity b

Figure 3. Comparison of morphs on the FRLL dataset.

(a) PS bona fide (b) PS DiM-C (c) PS OpenCV (d) PS StyleGan2

Figure 4. Additional print-scanned morphs and bona fides

Evaluated proposed attack scenario to compare digital and print-scanned images against each set of bona fides

as seen in Table 1.

Evaluated on the OpenCV [3], StyleGAN2 [3], and DiM [2] morphing attacks.

Used three FR systems representing the SOTA: ArcFace [4], AdaFace [5], and ElasticFace [6].

The ProdAvg Mated Morph Presentation Match Rate (MMPMR) metric [7] is defined as

M(δ) = 1
M

M∑
m=1

Nm∏
n=1

(
1

In
m

In
m∑

i=1
{S

n,i
m > δ}

) (1)

where δ is the verification threshold, Sn
m is the similarity score of the n-th subject of morph m, Nm is the total

number of contributing subjects to morph m, M is the total number of morphed images, and In
m is the number

of samples of the subject n compared to morph m.
Table 2. MMPMR for all scenarios with FMR = 0.1%. A higher MMPMR value represents a stronger attack.

FRLL FRGC FERET

Morph Scenario ArcFace ElasticFace AdaFace ArcFace ElasticFace AdaFace ArcFace ElasticFace AdaFace

OpenCV

D-D 99.02 98.69 99.26 67.31 50.99 53.22 89.04 75.61 81.78

D-PS 99.18 97.22 99.02 68.91 47.81 53.96 89.97 81.66 83.51

PS-D 98.61 96.81 97.87 55.67 43.15 45.36 86.45 78.48 81.95

PS-PS 98.85 94.19 99.02 69.89 41.61 55.51 88.82 78.58 77.13

StyleGAN2

D-D 5.89 3.27 6.55 1.38 1.21 1.25 0.82 0.32 0.72

D-PS 3.44 5.56 4.66 0.67 1.28 1.45 0.82 0.41 1.29

PS-D 5.32 1.31 7.53 1.00 1.00 0.56 0 0 0

PS-PS 6.63 3.11 6.38 0.41 0.44 1.36 0 0 0

DiM-C

D-D 92.88 82.00 88.22 48.70 43.24 41.75 69.76 59.65 65.27

D-PS 90.10 88.95 87.81 43.65 39.23 42.66 71.53 62.39 68.46

PS-D 92.39 77.09 91.33 49.11 37.98 35.82 74.03 62.21 65.08

PS-PS 93.62 83.22 90.83 37.47 28.30 44.04 66.91 64.20 69.99

When looking at any DiM-C morph scenario containing a print-scanned element, the scenarios perform better

89% of the time at an average of 5.01% with a maximum difference of 8.48%.

Similar performance can be observed across the OpenCV scenarios that contain a print-scanned element. 67%

of the morph scenarios perform better than the D-D scenario as a baseline averaging 3.17% with a maximum

difference of 8%.

Proposed approach illustrates the impact of heterogeneous media types across all data where FRs are more

vulnerable to attacks containing a print-scanned element.

Detection Study

Table 3. S-MAD Study with training by varying OpenCV Morphs with bona fides on FRGC.

Digital Digital + Print-Scan Print-Scan

MACER @ BPCER MACER @ BPCER MACER @ BPCER

Morphing Attack Scenario EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0%

OpenCV

D-D 0 0 0 0 0 0 0 0 4.81 71.76 26.93 4.64

PS-D 0.82 77.25 0.63 0.13 0 0 0 0 0 0 0 0

D-PS 0 0 0 0 0 0 0 0 11.78 88.55 61.32 26.66

PS-PS 13.63 96.12 70.7 39.37 0 0 0 0 0 0 0 0

StyleGAN2

D-D 0.13 0.13 0.07 0 0.1 0.1 0 0 9.97 97.33 78.41 30.74

PS-D 6.65 96.51 47.56 10.14 0.23 0.49 0 0 0.43 7.04 0.03 0

D-PS 1.91 68.6 5.96 0.56 0.86 7.83 0.79 0.1 25.61 99.61 85.39 65.01

PS-PS 31.47 99.74 97.5 79.66 2.57 48.85 6.65 1.09 2.27 48.45 8.62 0.69

DiM-C

D-D 7.67 87.03 55.63 13.2 15.14 99.8 91.67 52.21 39.43 99.57 96.61 87.2

PS-D 7.9 92.43 44.67 14.35 1.55 46.18 2.24 0.43 2.7 67.18 5.76 0.72

D-PS 0.3 4.34 0 0 1.25 20.67 1.58 0.26 36.87 100 99.61 92.13

PS-PS 9.97 87.52 50.2 23.5 2.9 68.89 7.27 1.15 7.27 91.47 51.58 13.43

Table 4. S-MAD Study with training by varying DiM-C Morphs with bona fides on FRGC.

Digital Digital + Print-Scan Print-Scan

MACER @ BPCER MACER @ BPCER MACER @ BPCER

Morphing Attack Scenario EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0%

OpenCV

D-D 4.08 70.9 13.03 3.39 3.59 49.7 14.94 2.47 13.69 92.2 67.94 29.13

PS-D 25.18 97.63 87.56 65.54 0.3 1.55 0.2 0.07 0.03 0.03 0.03 0

D-PS 1.78 39.53 2.83 0.53 5.69 82.55 39.8 6.81 17.12 96.84 80.09 41.31

PS-PS 41.51 98.49 93.42 85.94 15.8 92.36 83.11 47.7 8.29 94.31 50.63 13.66

StyleGAN2

D-D 8.72 97.2 46.38 16.66 2.17 80.94 5.92 0.36 6.22 84.69 51.48 7.27

PS-D 17.38 98.49 84.13 57.93 0.36 0.56 0.26 0.07 0.3 0.63 0.03 0

D-PS 10.53 91.08 60.5 27.52 7.67 98.12 52.01 14.02 18.27 99.93 88.78 57.04

PS-PS 33.18 99.77 95.06 81.34 11.09 94.6 81.5 30.22 6.75 91.71 32.13 8.69

DiM-C

D-D 0 0 0 0 0.07 0.07 0 0 11.52 99.08 87.66 33.67

PS-D 2.07 69.95 10.43 0.33 0 0 0 0 0 0 0 0

D-PS 0 0 0 0 0 0 0 0 1.91 38.71 4.11 0.95

PS-PS 2.5 65.67 8.13 0.92 0.03 0.03 0 0 0.1 0.39 0 0

Morphing Attack Classification Error Rate at a Bona Fide Presentation Classification Error

Rate (MACER @ BPCER) metric is defined to quantify the rate at which morphing

attacks are incorrectly classified as genuine biometric samples (MACER) while

maintaining a specified rate at which genuine biometric samples are incorrectly

classified as fraudulent (BPCER)s.

S-MAD performance relies heavily on input training data. When trained on DiM-C

morphs the OpenCV morphs had decreased detection rates. This trend is also seen

with the Print-Scan trained S-MAD not detecting digital morphs.

The low rates of detection observed with data not associated with the input training

data demonstrate venerability when detecting heterogeneous morphed images.

Conclusion

Developed print-scanned morph and bona fides that nominally outperform digital

counterparts.

Trained S-MAD to detect digitally morphed images and print-scanned morphed images.

Developed a novel strategy to incorporate mixed media types into evaluation scenarios.

Demonstrated the importance of input data for training detectors.

Evaluation scenarios can be expanded to incorporate simulated print-scanned data and

more types of morphs.
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