

The Impact of Print-and-Scan in Heterogeneous Morph Evaluation Scenarios

Motivation

(a) Digitally Morphed Image

(b) Print-Scanned Morphed image (c) Amplified Print-scan Artifacts

Figure 1. Example of a morph before and after undergoing print-scanning. Samples are from the FRLL dataset [1].

- **Print-scanned** Diffusion Morphs (DiM) which are a recent SOTA algorithm for creating face morphs [2]
- Introducing print-scanned elements into an evaluation with digital images creates uncertainty in Single-image Morphing Attack Detection (S-MAD).
- Print-Scanned and digital morphs currently are not evaluated against print-scanned bona fides.
- We propose a heterogeneous attack configuration where during evaluation a detector should be trained to detect images that contain elements that are both digital and print-scanned in nature.

Table 1. Attack scenarios to evaluate impact of heterogeneous data

Configuration	Morph	Bc		
D-D	Digital	Di		
D-PS	Digital	Pr		
PS-D	Print-Scanned	Di		
PS-PS	Print-Scanned	Pr		

Methodology

Figure 2. Heterogeneous morph attack pipeline in a simulated real-world scenario.

- Images are digitally arranged on an 8.5×12 inch blank PNG. JavaScript scripts are used to send the pages to Adobe Photoshop for print management to maintain ICC profiles.
- A Canon Pixma Pro 100 Printer and Epson 850v Pro Scanner were used for printing and scanning. All print-scanned images were set at a 600×600 resolution with a pixel-per-inch value of 300 to replicate a passport photo of size two inches by 2 inches while also maintaining their original aspect ratio.
- Images are saved as Portable Network Graphics (PNG) files without compression to avoid adding additional artifacts.
- The morphs, component identity pairs, and alternate bona fide identity images were print-scanned for evaluation. This resulted in 8,142 morphs and 4,653 bona fide images being print-scanned. This work used the bona fide pairs developed in [3] for our FRGC, FERET, and FRLL pairings and was used to create the DiM, OpenCV, and StyleGAN2 morphs.

Department of Electrical and Computer Engineering Clarkson University {neddore, blasinzw, cliu}@clarkson.edu

(a) Digital identity a

(f) PS identity a

(b) Digital DiM-C

(g) PS DiM-C

(c) Digital OpenCV

(h) PS OpenCV

Figure 3. Comparison of morphs on the FRLL dataset.

(a) PS bona fide

(b) PS DiM-C

- Evaluated proposed attack scenario to compare digital and print-scanned images against each set of bona fides as seen in Table 1.
- Evaluated on the OpenCV [3], StyleGAN2 [3], and DiM [2] morphing attacks.
- Used three FR systems representing the SOTA: ArcFace [4], AdaFace [5], and ElasticFace [6].
- The ProdAvg Mated Morph Presentation Match Rate (MMPMR) metric [7] is defined as

 $M(\delta) = \frac{1}{M} \sum_{m=1}^{M} \left| \prod_{n=1}^{N_m} \left(\frac{1}{I_m^n} \sum_{i=1}^{I_r'} \right) \right|_{i=1}^{N_m} \left(\frac{1}{I_m^n} \sum_{i=1}^{I_r'} \right) \right|_{i=1}^{N_m} \left(\frac{1}{I_m^n} \sum_{i=1}^{I_r'} \sum_{i=1}^{N_m} \left(\frac{1}{I_m^n} \sum_{i=1}^{N_m} \right) \right) \right|_{i=1}^{N_m} \left(\frac{1}{I_m^n} \sum_{i=1}^{N_m} \left(\frac{1}{I_m^n} \sum_{i=1}^{N_m} \right) \right) \right) = 0$

where δ is the verification threshold, S_m^n is the similarity score of the n-th subject of morph m, N_m is the total number of contributing subjects to morph m, M is the total number of morphed images, and I_m^n is the number of samples of the subject n compared to morph m.

Table 2. MMPMR for all scenarios with FMR = 0.1%. A higher MMPMR value represents a stronger attack.

			FRLL			FRGC		FERET			
Morph	Scenario	ArcFace	ElasticFace	AdaFace	ArcFace	ElasticFace	AdaFace	ArcFace	ElasticFace	AdaFace	
	D-D	99.02	98.69	99.26	67.31	50.99	53.22	89.04	75.61	81.78	
	D-PS	99.18	97.22	99.02	68.91	47.81	53.96	89.97	81.66	83.51	
OpenCV	PS-D	98.61	96.81	97.87	55.67	43.15	45.36	86.45	78.48	81.95	
	PS-PS	98.85	94.19	99.02	69.89	41.61	55.51	88.82	78.58	77.13	
	D-D	5.89	3.27	6.55	1.38	1.21	1.25	0.82	0.32	0.72	
	D-PS	3.44	5.56	4.66	0.67	1.28	1.45	0.82	0.41	1.29	
StyleGANZ	PS-D	5.32	1.31	7.53	1.00	1.00	0.56	Ο	0	0	
	PS-PS	6.63	3.11	6.38	0.41	0.44	1.36	0	0	0	
	D-D	92.88	82.00	88.22	48.70	43.24	41.75	69.76	59.65	65.27	
	D-PS	90.10	88.95	87.81	43.65	39.23	42.66	71.53	62.39	68.46	
DIM-C	PS-D	92.39	77.09	91.33	49.11	37.98	35.82	74.03	62.21	65.08	
	PS-PS	93.62	83.22	90.83	37.47	28.30	44.04	66.91	64.20	69.99	

- When looking at any DiM-C morph scenario containing a print-scanned element, the scenarios perform better 89% of the time at an average of 5.01% with a maximum difference of 8.48%.
- Similar performance can be observed across the OpenCV scenarios that contain a print-scanned element. 67% of the morph scenarios perform better than the D-D scenario as a baseline averaging 3.17% with a maximum difference of 8%.
- Proposed approach illustrates the impact of heterogeneous media types across all data where FRs are more vulnerable to attacks containing a print-scanned element.

Richard E. Neddo Zander W. Blasingame Chen Liu

Vulnerablity Study

(d) Digital StyleGan2

(i) PS StyleGan2

(e) Digital identity b

(j) PS identity b

(c) PS OpenCV

(d) PS StyleGan2

Figure 4. Additional print-scanned morphs and bona fides

$$\left[\sum_{i=1}^{m} \{S_m^{n,i} > \delta\}\right]$$

(1)

			Dig	gital		D	Digital + Print-Scan				Print-Scan				
			MACER @ BPCER				MAC	MACER @ BPCER			MACER @ BPCER				
Morphing Attack	Scenario	EER	0.1%	1.0%	5.0%	EER	0.1%	1.0%	5.0%	EER	0.1%	1.0%	5.0%		
	D-D	0	0	0	0	0	0	0	0	4.81	71.76	26.93	4.64		
	PS-D	0.82	77.25	0.63	0.13	0	0	0	0	0	0	0	0		
OpenCV	D-PS	0	0	0	0	0	0	0	0	11.78	88.55	61.32	26.66		
	PS-PS	13.63	96.12	70.7	39.37	0	0	0	0	0	0	0	0		
	D-D	0.13	0.13	0.07	0	0.1	0.1	0	0	9.97	97.33	78.41	30.74		
	PS-D	6.65	96.51	47.56	10.14	0.23	0.49	0	0	0.43	7.04	0.03	0		
StyleGAN2	D-PS	1.91	68.6	5.96	0.56	0.86	7.83	0.79	0.1	25.61	99.61	85.39	65.01		
	PS-PS	31.47	99.74	97.5	79.66	2.57	48.85	6.65	1.09	2.27	48.45	8.62	0.69		
	D-D	7.67	87.03	55.63	13.2	15.14	99.8	91.67	52.21	39.43	99.57	96.61	87.2		
	PS-D	7.9	92.43	44.67	14.35	1.55	46.18	2.24	0.43	2.7	67.18	5.76	0.72		
DIM-C	D-PS	0.3	4.34	0	0	1.25	20.67	1.58	0.26	36.87	100	99.61	92.13		
	PS-PS	9.97	87.52	50.2	23.5	2.9	68.89	7.27	1.15	7.27	91.47	51.58	13.43		

	Scenario		Dig	gital		D	Digital + Print-Scan				Print-Scan				
			MACER @ BPCER				MAC	MACER @ BPCER			MACER @ BPCER				
Morphing Attack		EER	0.1%	1.0%	5.0%	EER	0.1%	1.0%	5.0%	EER	0.1%	1.0%	5.0%		
	D-D	4.08	70.9	13.03	3.39	3.59	49.7	14.94	2.47	13.69	92.2	67.94	29.13		
	PS-D	25.18	97.63	87.56	65.54	0.3	1.55	0.2	0.07	0.03	0.03	0.03	0		
OpenCV	D-PS	1.78	39.53	2.83	0.53	5.69	82.55	39.8	6.81	17.12	96.84	80.09	41.31		
	PS-PS	41.51	98.49	93.42	85.94	15.8	92.36	83.11	47.7	8.29	94.31	50.63	13.66		
	D-D	8.72	97.2	46.38	16.66	2.17	80.94	5.92	0.36	6.22	84.69	51.48	7.27		
	PS-D	17.38	98.49	84.13	57.93	0.36	0.56	0.26	0.07	0.3	0.63	0.03	0		
Styleganz	D-PS	10.53	91.08	60.5	27.52	7.67	98.12	52.01	14.02	18.27	99.93	88.78	57.04		
	PS-PS	33.18	99.77	95.06	81.34	11.09	94.6	81.5	30.22	6.75	91.71	32.13	8.69		
	D-D	0	0	0	0	0.07	0.07	0	0	11.52	99.08	87.66	33.67		
	PS-D	2.07	69.95	10.43	0.33	0	0	0	0	0	0	0	0		
DIM-C	D-PS	0	0	0	0	0	0	0	0	1.91	38.71	4.11	0.95		
	PS-PS	2.5	65.67	8.13	0.92	0.03	0.03	0	0	0.1	0.39	0	0		

- classified as fraudulent (BPCER)s.

- counterparts.

- more types of morphs.

- Identity Science, vol. 6, no. 1, pp. 118–131, 2024.

- Computer Vision and Pattern Recognition, pp. 4690–4699, 2019.
- Pattern Recognition, 2022.
- Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1578–1587, June 2022.

Detection Study

Table 3. S-MAD Study with training by varying OpenCV Morphs with bona fides on FRGC.

Table 4. S-MAD Study with training by varying DiM-C Morphs with bona fides on FRGC.

• Morphing Attack Classification Error Rate at a Bona Fide Presentation Classification Error *Rate* (MACER @ BPCER) metric is defined to quantify the rate at which morphing attacks are incorrectly classified as genuine biometric samples (MACER) while maintaining a specified rate at which genuine biometric samples are incorrectly

S-MAD performance relies heavily on input training data. When trained on DiM-C morphs the OpenCV morphs had decreased detection rates. This trend is also seen with the Print-Scan trained S-MAD not detecting digital morphs.

• The low rates of detection observed with data not associated with the input training data demonstrate venerability when detecting heterogeneous morphed images.

Conclusion

Developed print-scanned morph and bona fides that nominally outperform digital

 Trained S-MAD to detect digitally morphed images and print-scanned morphed images. Developed a novel strategy to incorporate mixed media types into evaluation scenarios. Demonstrated the importance of input data for training detectors.

• Evaluation scenarios can be expanded to incorporate simulated print-scanned data and

References

[2] Z. W. Blasingame and C. Liu, "Leveraging diffusion for strong and high quality face morphing attacks," IEEE Transactions on Biometrics, Behavior, and

[3] E. Sarkar, P. Korshunov, L. Colbois, and S. Marcel, "Are gan-based morphs threatening face recognition?," in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2959–2963, 2022.

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, "Arcface: Additive angular margin loss for deep face recognition," in *Proceedings of the IEEE Conference on*

[5] M. Kim, A. K. Jain, and X. Liu, "Adaface: Quality adaptive margin for face recognition," in Proceedings of the IEEE/CVF Conference on Computer Vision and [6] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper, "Elasticface: Elastic margin loss for deep face recognition," in Proceedings of the IEEE/CVF

[7] U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. N. J. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R. Breithaupt, R. Ramachandra, and C. Busch, "Biometric systems under morphing attacks: Assessment of morphing techniques and vulnerability reporting," in 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–7, 2017.

^[1] L. DeBruine and B. Jones, "Face Research Lab London Set," 5 2017.