

Diffusion Morphs (DiM)

Leveraging Diffusion for Strong and High-Quality Face Morphing Attacks

Zander W. Blasingame Chen Liu

Clarkson University Potsdam, NY, USA

09.18.2024

Introduction

Face Morphing

Figure 1: Images from FRLL¹ dataset. Morph generated via DiM.

¹Lisa DeBruine and Benedict Jones. "Face Research Lab London Set". In: (May 2017). DOI: 10.6084/m9.figshare.5047666.v5. URL: https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666.

Morph Creation Pipeline

Generative Model

Figure 2: General morph creation pipeline using generative models.

• Forward diffusion process is governed by the Itô SDE

$$d\mathbf{x}_t = f(t)\mathbf{x}_t \, dt + g(t) \, d\mathbf{w}_t \tag{1}$$

where $\{\mathbf{w}_t\}_{t\in[0,T]}$ is the standard Wiener process on [0,T]

²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.

³Tim Salimans and Jonathan Ho. "Progressive Distillation for Fast Sampling of Diffusion Models". In: International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=TIdIXIpzhoI.

Diffusion Process

• The diffusion equation can be reversed with

$$d\mathbf{x}_t = [f(t)\mathbf{x}_t - g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)] dt + g(t) d\breve{\mathbf{w}}_t$$
(2)

where $\breve{\mathbf{w}}_t$ is the *backwards* Wiener process defined as $\breve{\mathbf{w}}_t \coloneqq \mathbf{w}_t - \mathbf{w}_T$

- The marginal distributions $p_t(\mathbf{x})$ follow an associated ODE known as the probability flow ODE^2

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = f(t)\mathbf{x}_t - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x}_t)$$
(3)

²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.

³Tim Salimans and Jonathan Ho. "Progressive Distillation for Fast Sampling of Diffusion Models". In: International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=TIdIXIpzhoI.

Diffusion Process

• Often the Variance Preserving (VP) framework is used where the drift and diffusion coefficients are

$$f(t) = \frac{\mathrm{d}\log\alpha_t}{\mathrm{d}t} \tag{4}$$

$$g^{2}(t) = \frac{\mathrm{d}\sigma_{t}^{2}}{\mathrm{d}t} - 2\frac{\mathrm{d}\log\alpha_{t}}{\mathrm{d}t}\sigma_{t}^{2}$$
(5)

for some noise schedule α_t, σ_t

• Sampling the forward trajectory then simplifies to

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}_t \qquad \boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \tag{6}$$

³Tim Salimans and Jonathan Ho. "Progressive Distillation for Fast Sampling of Diffusion Models". In: International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=TIdIXIpzhoI.

²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.

Diffusion Process

• Learning the score $abla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ is similar to learning the noise $\boldsymbol{\epsilon}$

$$\epsilon_{\theta}(\mathbf{x}_t, t) \approx -\sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \tag{7}$$

or some other closely related quantity like x_0 -prediction³

• Train a U-Net, $\epsilon_{\theta}(\mathbf{x}_t, t)$, to learn the added noise

$$\hat{\theta} = \arg\min_{\theta} \quad \mathbb{E}_{\substack{\mathbf{x}_0 \sim p(\mathbf{x}_0)\\ \boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}} \left[\|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)\|_2^2 \right]$$
(8)

²Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.

³Tim Salimans and Jonathan Ho. "Progressive Distillation for Fast Sampling of Diffusion Models". In: International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=TIdIXIpzhoI.

Diffusion Morphs (DiM)

• Encode bona fide images

$$\mathbf{z}_{\{a,b\}} = E(\mathbf{x}_0^{(\{a,b\})})$$
(9)

- Let $\Phi(\mathbf{x}_0, \mathbf{z}, \mathbf{h}_{\theta}, \{t_n\}_{n=1}^N) \mapsto \mathbf{x}_T$ denote a numerical ODE solver with
 - 1. Initial image \mathbf{x}_0
 - 2. Latent representation of \mathbf{x}_0 , $\mathbf{z} = E(\mathbf{x}_0)$
 - 3. Denoising U-Net conditioned on \mathbf{z} , $\epsilon_{\theta}(\mathbf{x}_t, \mathbf{z}, t)$
 - 4. The PF ODE given by

$$\mathbf{h}_{\theta}(\mathbf{x}_t, \mathbf{z}, t) = f(t)\mathbf{x}_t + \frac{g^2(t)}{2\sigma_t}\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{z}, t)$$
(10)

5. N timesteps $\{t_n\}_{n=1}^N \subseteq [0,T]$

• Encode images solving the PF ODE as time runs forwards

$$\mathbf{x}_{T}^{(\{a,b\})} = \Phi(\mathbf{x}_{0}^{(\{a,b\})}, \mathbf{z}_{\{a,b\}}, \mathbf{h}_{\theta}, \{t_{n}\}_{n=1}^{N_{F}})$$
(11)

with N_F encoding steps and $t_n < t_{n+1}$

• Morph the latent representations

$$\mathbf{x}_T^{(ab)} = \operatorname{slerp}(\mathbf{x}_T^{(a)}, \mathbf{x}_T^{(b)}; \gamma)$$
(12)

$$\mathbf{z}_{ab} = \operatorname{lerp}(\mathbf{z}_a, \mathbf{z}_b; \gamma) \tag{13}$$

by a factor of $\gamma=0.5$

• Create morph by solving the PF ODE as time runs backwards

$$\mathbf{x}_{0}^{(ab)} = \Phi(\mathbf{x}_{T}^{(ab)}, \mathbf{z}_{ab}, \mathbf{h}_{\theta}, \{\tilde{t}_{n}\}_{n=1}^{N})$$
(14)

with N sampling steps and $\tilde{t}_n > \tilde{t}_{n+1}$

Visual Comparison to Other Morphing Attacks

Figure 3: Comparison across different morphing algorithms of two identity pairs from the FRLL dataset.

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD 2022 dataset. FMR = 0.1%.

	MMPMR (↑)					
Morphing Attack	AdaFace [8]	ArcFace [6]	ElasticFace [4]			
FaceMorpher [7]	89.78	87.73	89.57			
OpenCV [7]	94.48	92.43	94.27			
MIPGAN-I [13]	72.19	77.51	66.46			
MIPGAN-II [13]	70.55	72.19	65.24			
DiM [3]	92.23	90.18	93.05			

• Mated Morph Presentation Match Rate (MMPMR)

$$M(\delta) = \frac{1}{M} \sum_{n=1}^{M} \left\{ \left[\min_{n \in \{1, \dots, N_m\}} S_m^n \right] > \delta \right\}$$
(15)

where δ is the verification threshold, S_m^n is the similarity score of the *n*-th subject of morph m, N_m is the total number of contributing subjects to morph m, and M is the total number of morphed images.

	Included in the Training Set				Detection Accuracy (\downarrow)					
Dataset	DiM	FaceMorpher	MIPGAN-II	OpenCV	StyleGAN2	DiM	FaceMorpher	MIPGAN-II	OpenCV	StyleGAN2
FERET [9]	×	1	1	1	1	72.73	99.23	100	99.95	99.33
	1	×	1	1	1	99.9	76.39	100	99.85	99.64
	1	1	×	1	1	99.69	99.38	100	99.95	99.54
	1	1	1	×	1	99.74	99.48	100	99.74	99.43
	1	1	1	1	×	99.74	98.56	99.9	99.74	87.89
FRGC [10]	×	1	1	1	1	75.89	99.98	99,97	99.9	99.93
	1	×	1	1	1	99.95	99.48	100	99.9	99.95
	1	1	×	1	1	99.83	99.85	99.82	99.8	99.85
	1	1	1	×	1	99.93	100	100	99.23	99,93
	1	1	1	1	×	99.93	99.93	99.94	99.88	97.83
FRLL [5]	x	1	1	1	1	13.96	99.58	99.32	99.65	99.65
	1	x	1	1	1	99.23	99.09	98.91	99.37	99.44
	1	1	x	1	1	99.09	98.95	98.24	99.02	99.09
	1	1		x	1	99.51	99.44	99.19	99.16	99.58
	1	1	1	1	x	99.93	99.86	99.86	99.93	95.02

Table 2: Ablation study on the ability to detect morphing attacks.

- DiM creates morphs with high visual fidelity
- DiM outperforms GAN-based morphs
- DiM is difficult to detect if not explicitly trained against
- Flexible generation due to iterative nature
- Slow inference speed due to multiple iterations

Since our initial work there have been several extensions and improvements on DiM **Fast-DiM**⁴ High-order ODE solvers for faster sampling, reduces NFE from 350 to 150 **Morph-PIPE**⁵ Brute force search for optimal γ w.r.t. an identity loss, increased MMPMR **Greedy-DiM**⁶ Greedy guided generation for DiM, 100% MMPMR on SYN-MAD 22

⁴Zander W. Blasingame and Chen Liu. "Fast-DiM: Towards Fast Diffusion Morphs". In: IEEE Security & Privacy (2024), pp. 2–13. DOI: 10.1109/MSEC.2024.3410112.

⁵Haoyu Zhang et al. "Morph-PIPE: Plugging in Identity Prior to Enhance Face Morphing Attack Based on Diffusion Model". In: Norwegian Information Security Conference (NISK). 2023.

⁶Zander W. Blasingame and Chen Liu. "Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs". In: arXiv e-prints, arXiv:2404.06025 (Apr. 2024), arXiv:2404.06025. DOI: 10.48550/arXiv.2404.06025. arXiv: 2404.06025 [cs.CV].

Questions?

Code and project page for DiM

Further reading on DiM

References i

References

- Zander W. Blasingame and Chen Liu. "Fast-DiM: Towards Fast Diffusion Morphs". In: IEEE Security & Privacy (2024), pp. 2–13. DOI: 10.1109/MSEC.2024.3410112.
- [2] Zander W. Blasingame and Chen Liu. "Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs". In: arXiv e-prints, arXiv:2404.06025 (Apr. 2024), arXiv:2404.06025. DOI: 10.48550/arXiv.2404.06025. arXiv: 2404.06025 [cs.CV].
- [3] Zander W. Blasingame and Chen Liu. "Leveraging Diffusion for Strong and High Quality Face Morphing Attacks". In: *IEEE Transactions on Biometrics, Behavior, and Identity Science* 6.1 (2024), pp. 118–131. DOI: 10.1109/TBIOM.2024.3349857.
- [4] Fadi Boutros et al. "ElasticFace: Elastic Margin Loss for Deep Face Recognition". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. June 2022, pp. 1578–1587.

References ii

- [5] Lisa DeBruine and Benedict Jones. "Face Research Lab London Set". In: (May 2017). DOI: 10.6084/m9.figshare.5047666.v5. URL: https: //figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666.
- Jiankang Deng et al. "Arcface: Additive angular margin loss for deep face recognition". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 4690–4699.
- [7] Marco Huber et al. "SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data". In: 2022 IEEE International Joint Conference on Biometrics (IJCB). 2022, pp. 1–10. DOI: 10.1109/IJCB54206.2022.10007950.
- [8] Minchul Kim, Anil K Jain, and Xiaoming Liu. "AdaFace: Quality Adaptive Margin for Face Recognition". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.
- [9] P. Phillips et al. "The FERET database and evaluation procedure for face-recognition algorithms". In: *Image Vis. Comput.* 16 (1998), pp. 295–306.

References iii

- P.J. Phillips et al. "Overview of the face recognition grand challenge". In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. 2005, 947–954 vol. 1. DOI: 10.1109/CVPR.2005.268.
- [11] Tim Salimans and Jonathan Ho. "Progressive Distillation for Fast Sampling of Diffusion Models". In: International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=TIdIXIpzhoI.
- [12] Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=PxTIG12RRHS.
- [13] Haoyu Zhang et al. "MIPGAN—Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN". In: *IEEE Transactions on Biometrics, Behavior, and Identity Science* 3.3 (2021), pp. 365–383. DOI: 10.1109/TBIOM.2021.3072349.
- [14] Haoyu Zhang et al. "Morph-PIPE: Plugging in Identity Prior to Enhance Face Morphing Attack Based on Diffusion Model". In: Norwegian Information Security Conference (NISK). 2023.